Vysoká škola báňská – Technická univerzita Ostrava Fakulta strojní

MODELOVÁNÍ PŘENOSU TEPLA, HMOTY A HYBNOSTI

Návody do cvičení

Milada Kozubková Marian Bojko Veronika Mořkovská Patrik Marcalík

Ostrava 2020

Anotace

Cílem je stručné seznámení studenta s e základními pojmy přenosu hmoty, hybnosti a tepla v aplikacích na tepelné výměníky. Následuje ilustrativní příklad obsahující definování problému, fyzikálních vlastností proudících médií, okrajových podmínek. S využitím software Ansys – Fluent se realizuje příprava geometrie, tvorba výpočtové sítě, samotný výpočet a zhodnocení výsledků a jejich orovnání s analytickým řešením. Dále je uvedena řada příkladů k řešení dle výše popsaného postupu. Po prostudování modulu by měl student být schopen popsat problém výměníku, sestavit fyzikální a matematický model, připravit daný problém pro numerický výpočet a tento výpočet také provést a vyhodnotit. Poté vyhodnotit numerický výpočet s analytickým řešením.

OBSAH

1	Р	PŘENOS HMOTY, HYBNOSTI A TEPLA	4
2	Т	TEPELNÉ VÝMĚNÍKY	6
	2.1	Tepelný výkon	6
	Тер	elný výkon lze určit jako hodnotu spočtenou ve Fluentu	8
	2.2	Tlaková ztráta	8
	2.3	Bezrozměrná kritéria	9
3	F	FOURIERŮV ZÁKON - VEDENÍ TEPLA V TYČI	
	3.1	ANSYS Workbench	14
	3.2	ANSYS DesignModeler	14
	3.3	ANSYS Meshing	
	3.4	ANSYS Fluent	
	3.5	Varianty výpočtů	45
4	L	AMINÁRNÍ PROUDĚNÍ – PROUDĚNÍ VODY MEZI DESKAMI	50
	4.1	Vytvoření geometrie a sítě	51
	4.2	Výpočet ve Fluentu	53
	4.3	Varianty výpočtů	63
5	Т	FURBULENTNÍ – PROUDĚNÍ VODY MEZI DESKAMI	64
	5.1	Geometrie a výpočetní síť	65
	5.2	ANSYS Fluent	66
	5.3	Varianty výpočtů	72
6	Ř	ŘEŠENÍ VZOROVÉHO PŘÍKLADU – SOUPROUDÝ VÝMĚNÍK	73
	6.1	Matematický model a teoreticko-empirický odhad úlohy	74
	6.2	Tvorba geometrie	75
	6.3	Tvorba výpočetní sítě	78
	6.4	ANSYS FLUENT	
7	Š	SÍŘENÍ TEPLA KONDUKCÍ A KONVEKCÍ V OVZDUŠÍ	108
	7.1	Matematický model a teoreticko-empirický odhad úlohy	109
	7.2	Tvorba geometrie a sítě	110
	7.3	Výpočet problému s gravitací	110
	7.4	Výsledky	
		· ·	

1 PŘENOS HMOTY, HYBNOSTI A TEPLA

Základní zákony zachování hmoty, hybnosti a energie jsou popsány integrálními nebo parciálními diferenciálními rovnicemi s okrajovými a počátečními podmínkami, které významně ovlivňují výsledek řešení. V obecné konzervativní formě je tvar rovnic následující:

$$\iiint_{V} \frac{\partial(\rho\zeta)}{\partial t} dV + \iiint_{S} \left(\rho\zeta \vec{u} \cdot \vec{n} \right) dS = \iiint_{S} \left[\alpha_{\zeta} \nabla\zeta \right] dS + \iiint_{V} S_{\zeta} dV$$
(1.1)
akumulace + konvekce = difúze + zdroj

kde ζ je obecná proměnná a členy v rovnici jsou postupně konvektivní (souvisí s vektorem rychlosti proudění \vec{u}), difúzní a zdrojový člen, proto se rovnice nazývá také konvekčně - difúzní rovnice.

Tuto rovnici lze vyjádřit v diferenciálním tvaru (obvyklejším v učebnicích hydromechaniky a termomechaniky):

akumulace	+	konvekce	=	difúze	+	zdroj	()
$rac{\partial(ho\zeta)}{\partial t}$	+	$\nabla \cdot \left(\rho \vec{u} \zeta \right)$	=	$\nabla \cdot \left[\alpha_{\zeta} \nabla \zeta \right]$	+	S_{ζ}	(1.2)

Pokud ζ představuje teplotu, příměs nebo jinou skalární veličinu, pak se jedná o lineární rovnici druhého řádu, pokud ζ představuje složku rychlosti, jedná se o nelineární rovnici.

Úloha najít řešení rovnice (1.2) splňující okrajové i počáteční podmínky se nazývá smíšenou úlohou. Jsou-li okrajové podmínky rovny nule, nazývají se homogenní okrajové podmínky, podobně jsou-li počáteční podmínky rovny nule, nazývají se homogenní počáteční podmínky. Místo okrajových podmínek mohou být dány podmínky jiného typu, které se též nazývají okrajové. Úvaha o okrajových a počátečních podmínkách pro teplotu je platná pro obecnou proměnnou ζ . Analytické řešení takových systémů je možné pouze ve výrazně zjednodušených aplikacích. Proto je v současné době kladen důraz na numerické řešení a s cílem specifikovat jeho možnosti.

Numerické modelování umožňuje řešit nejrůznější problémy, např.:

- rovinné dvourozměrné proudění, osově symetrické proudění, obecné trojrozměrné proudění
- stacionární, nestacionární a přechodové proudění
- laminární a turbulentní proudění v jednoduchých i složitých geometriích
- stlačitelné a nestlačitelné proudění
- přenos tepla, přirozená a smíšená konvekce, radiace
- přenos chemické příměsi včetně chemických reakcí, hoření
- vícefázové proudění, proudění s volnou hladinou, proudění s pevnými částicemi a bublinami
- proudění porézním prostředím, atd.

K tomuto účelu jsou dnes k dispozici výkonné CFD (Computational Fluid Dynamics) programové systémy, např. Ansys-Fluent, Ansys-CFX, OpenFoam, Star CCM+ atd. Jejich využívání je podmíněno rozšířením znalostí z oblasti proudění, numerických metod, výpočetní techniky. S rozvojem výpočetní techniky se mění požadavky na její uživatele, zejména v oblasti projektování. V poslední době nabyly poznatky vedoucí k správné volbě výpočetního modelu, výpočetní metody a interpretace výsledků, výraznou převahu nad matematickou a programátorskou stránkou řešené problematiky. Ta zůstává vyhrazena špičkovým specialistům v oblasti matematiky a programátorství a problémově orientovaným specialistům firem produkujících software.

Pokud jde o výpočetní metodu, je založena na metodě konečných objemů. Uživatel by měl znát jejich podstatu v rozsahu potřebném pro spolehlivé použití ve standardních případech. U programu Fluent je třeba vědět, s jakými tvary konečných objemů se bude pracovat, z toho vyplývá volba hustoty sítě, jaká aproximační schémata bude vhodné použít, u dynamiky mít představu o charakteru časové závislosti jednotlivých veličin a z toho vyplývající velikosti časového kroku, apod. Dále je nezbytné porozumět obecné dikci manuálů, protože bez této pomůcky není možné seriózně zpracovat zadání úlohy. Neméně významnou částí je vyhodnocení výsledků, které je obzvlášť obtížné u trojrozměrných úloh. Je optimální mít k dispozici alespoň orientační hodnoty počítaných veličin, ideální je srovnání výsledků s experimentem. Tento učební text by měl dát návod, jak postupovat při řešení výše uvedených problémů.

2 TEPELNÉ VÝMĚNÍKY

Výměníky tepla jsou zařízení, která zajišťují přenos vnitřní tepelné energie (entalpie) mezi dvěma a více tekutinami, mezi pevným povrchem a tekutinou, nebo mezi částicemi a tekutinou, při jejich vzájemné interakci bez dodané externí práce a tepla.

obr. 2.1 – Schéma toků tekutin a tepla výměníkem (protiproudý výměník)

Т×

ohřívaná tekutina

Tekutiny mohou být obecně jednosložkové, nebo může jít o směs, a to jak jednofázovou, tak binární. Typickou aplikací jsou dvoumédiové ohřívače a chladiče tekutin, kde jsou obě tekutiny odděleny pevnou stěnou, a výparníky v tepelných a jaderných elektrárnách. Typické výměníky lze rozdělit do několika skupin

- výměníky o trubkové, tubusové, spirální (souproudé, protiproudé a křížové),
- výměníky voštinové,

směr toku tepla

• výměníky deskové.

Základní konstrukční parametry pro popis výměníků jsou tepelný výkon a tlaková ztráta, které budou definovány pro jednoduchost dle schématu z obr. 2.1.

2.1 Tepelný výkon

Energetická analýza vychází z kalorimetrické rovnice, která popisuje výměnu tepla dvou nebo více objektů. Teplo prochází tedy pevnou stěnou výměníku a následně také tekutinou a je pak ovlivněno prouděním.

Vedení tepla pevnou stěnou, tedy tepelný výkon je popsán následující rovnicí

$$P = \lambda \frac{t_{h,S} - t_{c,S}}{d} S$$
(2.1)

kde λ je součinitel tepelné vodivosti [W·m⁻¹·K⁻¹], $t_{h,s}$ je teplota pevné stěny, horká strana, $t_{c,s}$ je teplota pevné stěny, studená strana, S je teplosměnná plocha [m²], d je charakteristický rozměr [m]. V blízkosti stěny se však nachází rychlostní, tak i teplotní mezní vrstva. Teplotní mezní vrstva souvisí s koeficientem přestupu tepla, který definuje, jak intenzivně přechází teplo z tekutiny do pevné stěny nebo naopak. Rovnice pro přestup tepla pro teplou a studenou stěnu je dáno následujícími rovnicemi

$$P = \alpha_c (t_{c,s} - t_c) S$$

$$P = \alpha_h (t_{h,s} - t_h) S$$
(2.2)

kde α_h je součinitel přestupu tepla na straně teplé tekutiny, α_c je součinitel přestupu tepla na straně chladné tekutiny, t_h je průběh teploty v ochlazované tekutině, t_c je průběh teploty v ohřívané tekutině. Dále se zavede veličina, která se bude nazývat **koeficient prostupu tepla**

$$k = \frac{1}{\frac{1}{\alpha_h} + \frac{d}{\lambda} + \frac{1}{\alpha_c}}$$
(2.3)

Po zavedení prostupu tepla pak rovnice pro výkon přejde do tvaru

$$P = k(t_h - t_c)S \tag{2.4}$$

Analýzou předchozího vztahu lze tedy stanovit parametry, které ovlivňují výkon výměníku. Pokud je záměrem maximalizovat výkon, pak je nutné vycházet z následujících podmínek

tloušťka stěny by měla být co nejmenší (to je důvod tenkých stěn ve výměnících)
 tepelná vodivost pevné stěny by měla být co největší (to je důvod proč se využívají materiály s vysokou tepelnou vodivostí, hliník, měď atd.)

3. teplosměnná plocha by měla být co největší (to je důvod proč je ve výměnících velký počet žeber, voštin, malých trubek pod.)

4. koeficient přestupu tepla by měl být co největší, jeho hodnota se dá částečně ovlivnit rychlostí tekutiny, s rostoucí rychlostí však narůstají s druhou mocninou tlakové ztráty.

Při proudění systémem trubek dochází k významné změně teploty, pak tepelný výkon by byl silně nadhodnocen při použití rozdílu teplot $\Delta T = T_s - T_{ref}$. Protože se tekutina pohybuje skrz systém trubek, teplota stěny se snižuje a tím také teplotní rozdíl. Proto se používá tzv. logaritmická teplotní diference

$$\Delta T_{lm} = \frac{(T_s - T_l) - (T_s - T_o)}{\ln\left(\frac{(T_s - T_l)}{(T_s - T_o)}\right)}$$
(2.5)

kde $T_{\mu}T_{O}$ jsou vstupní a výstupní teplota proudícího média. Výstupní teplota, která je potřebná k určení ΔT_{lm} může být odhadnuta ze vztahu

$$\frac{T_{s} - T_{O}}{T_{s} - T_{I}} = \exp\left(-\frac{\pi dN\overline{\alpha}}{\rho v N_{T} S_{T} c_{\rho}}\right) \Longrightarrow T_{O} = -\left(\exp\left(-\frac{\pi dN\overline{\alpha}}{\rho v N_{T} S_{T} c_{\rho}}\right) (T_{s} - T_{I}) - T_{s}\right)$$

kde *N* je celkový počet trubek v systému a N_{τ} je počet trubek svislé rovině, ν je odhad rychlosti proudění. Tedy ΔT_{lm} je známo. Samozřčjmě při pouřití numerického výpočtu se hodnoty teploty určí jako průměrné hodnoty na vstupní a výstupní hraně.

Tepelný výkon na jednotku délky trubky může být spočítán ze vztahu

$$P = N(\pi d \overline{\alpha} \Delta T_{lm})$$
(2.6)

Tepelný výkon lze určit jako hodnotu spočtenou ve Fluentu.

2.2 Tlaková ztráta

Výkon, který je nutné dodat tekutině, aby proudila výměníkem v daném množství, je možné určit pomocí tlakové ztráty z následujícího vztahu:

$$P = \frac{Q_m \Delta \rho}{\rho}$$

$$P \approx \frac{1}{2} \frac{\eta}{\rho^2} \frac{4l}{d_h} f(\text{Re}) \qquad \text{pro laminární proudění} \qquad (2.7)$$

$$P \approx \frac{0.046}{2} \frac{\eta^{0.2}}{\rho^2} \frac{4l}{d_h} \frac{Q_m^{2.8}}{S_0^{1.8} d_h^{0.2}} \qquad \text{pro turbulentní proudění}$$

/ je délka, na které dochází k přestupu tepla, d_h je hydraulický průměr a S_0 je minimální průtočná plocha výměníku.

Obecně je tlaková ztráta výměníku závislá na následujících parametrech:

1. třecí ztráty, které souvisejí s prouděním tekutiny okolo teplosměnných ploch a tedy třecími (viskózními) silami

2. momentový efekt, který souvisí se změnou hustoty při proudění ve výměníku

3. komprese a expanze tekutiny při obtékaní těles (teplosměnných ploch)

4. geometrické parametry výměníku (u velkých vertikálních výměníku je nutné zahrnout také statický tlak vyvozený gravitací, pro plyny se tato ztráta zanedbává.

Při proudění systémem trubek je tlaková ztráta závislá na ztrátovém součiniteli příslušném systému trubek a určovaném empiricky.

$$\Delta \rho = N_{L} \zeta \left(\frac{\rho u_{\text{max}}^{2}}{2} \right) \text{ resp. } \Delta \rho = N_{L} \zeta \left(\frac{8Q_{m}^{2}}{\rho \pi^{2} d^{4}} \right)$$
(2.8)

Ztrátový součinitel je specifický pro různé uspořádání trubek. Při uspořádání trubek za sebou je definován následovně:

$$\zeta = \gamma \left(N_{L} \frac{S_{L}}{S_{T}} A + B \right)$$

$$kde \ A = 0.028 \left(\frac{S_{T}}{2a} \right)^{2} a = \frac{S_{T} - d}{2} B = \left(\frac{S_{T}}{2a} - 1 \right)^{2}$$
(2.9)

Při uspořádání trubek křížem je definován podobně:

$$\zeta = \gamma \left(0.7 + 0.8 \left(N_L \frac{S_L}{S_T} A + B \right) \right)$$

$$kde \ A = 0.028 \left(\frac{S_T}{2a} \right)^2 a = \frac{S_T - d}{2} B = \left(\frac{S_T}{2a} - 1 \right)^2$$
(2.10)

Součinitel γ závisí na Reynoldsově čísle. Pro hodnoty vyšší než 40000 je roven jedné a pro hodnoty nižší je odhadnut z empirických měření a je zobrazen v *obr.* 2.2.

obr. 2.2 – Hodnoty součinitele γ v závislosti na Re čísle

Jak je vidět, že řešení obtékání takového systému trubek je závislé na řadě empiricky určených koeficientů, jejichž specifikace není cílem tohoto předmětu. Ve Fluentu se totiž získá tlakový spád přímo a využije se přitom průměrovaných hodnot tlaků na vstupní a výstupní hraně. Tím je také možno zpětně ztrátový součinitel určit, může být tedy výsledkem výpočtu.

$$\zeta = \frac{p_{1tot} - p_{2tot}}{p_{2dyn}}$$
(2.11)

2.3 Bezrozměrná kritéria

Při přípravě matematického modelu je nutné rozhodnout o typu proudění a pro kontrolu srovnat řešení numerické s analytickým, proto je třeba definovat bezrozměrné parametry, jako je:

Reynoldsovo číslo (Re), které je určováno z okrajových a fyzikálních podmínek za účelem specifikace laminárního nebo turbulentního proudění. Jeho hodnota charakterizuje proudění v přechodové oblasti mezi laminárním a turbulentním prouděním [3].

$$\operatorname{Re} = \frac{ud_{h}}{v} \tag{2.12}$$

kde tzv. hydraulický průměr d_h reprezentuje při proudění v potrubí průměr trubky, při obtékání trubky také její průměr, V je střední rychlost proudícího média. Při proudění v trubce platí, že pokud je hodnota Re < 2320 jedná se o laminární proudění (částice se pohybují ve vrstvách). Při vyšším Re > 2320 se jedná o turbulentní proudění (částice se víří) [4]. **Prandtlovo číslo** je pouze závislé na materiálových vlastnostech tekutiny. Vztahuje se k tloušťkám mezních vrstev, referenční rychlosti a teploty.

$$\Pr = \frac{\rho \, c_{\rho} v}{\lambda} = \frac{v}{a} \tag{2.13}$$

Pro vzduch je možno předpokládat jeho hodnotu konstantní 0.7.

Fourierovo číslo je poměr vedení tepla k jeho akumulaci v pevném tělese

$$Fo = \frac{\lambda \tau}{c_p \rho d_h^2}$$
(2.14)

au je časová konstanta.

Nusseltovo číslo vyjadřuje vliv proudění na tepelný tok stěnou, a závisí na geometrickém referenčním parametru (který je dobře definovatelný).

$$Nu = \frac{\alpha d_h}{\lambda}$$
(2.15)

Koeficient prostupu α tepla zahrnuje tepelnou vodivost λ pevných stěn, které oddělují obě tekutiny a dále koeficient přestupu tepla $\alpha_{1,2}$ pro rozhraní mezi pevnou stěnou a oběma tekutinami. Tento koeficient je však závislý jak na materiálových vlastnostech proudící tekutiny, tak i na charakteru proudění v okolí pevné stěny.

Druhá definice Nusseltova čísla obsahuje lépe měřitelné veličiny, jako je tepelný výkon P, charakteristický rozměr d_h , plocha S, na které je určován přestup tepla, teplotní spád mezi teplotou stěny a referenční teplotou okolí $\Delta T = T_s - T_{ref}$. Teplotní spád může být specifikován také jako střední logaritmická diference.

$$Nu = \frac{P d_h}{S \Delta T \lambda}$$
(2.16)

Koeficient přestupu tepla je možné stanovit na základě celé řady empirických vztahů, a v praxi se nejčastěji využívá teorie podobnosti. Pokud tedy známe hodnotu Nusseltova čísla můžeme určit koeficient přestupu tepla α . Nusseltovo číslo je obecně funkcí dalších podobnostních kritérií

$$Nu = f(Re, Pr, Fo)$$
(2.17)

V případě nucené konvekce se hodnota Nusseltova čísla určuje v závislosti na hodnotě Re čísla.

Tab. 2.1 Nucená konvekce

laminární proudění kolem desky <i>T</i> sie konstantní	$Nu = 0,664 \text{ Re}_{L}^{1/2} \text{ Pr}^{1/3}$		0,6 ≤ Pr		
uesky, rsje konstantin	$\operatorname{Re}_{L} = \frac{uL}{v}, \ 10^{4} \le \operatorname{Re}_{L}$	\leq 5.10 ⁵ ,	∟délka desky		
laminární proudění kolem desky a je konstantní	$Nu = 0,908 \operatorname{Re}_{L}^{1/2} \operatorname{Pr}^{1/3}$		0,6 ≤ Pr		
	$\operatorname{Re}_{L} = \frac{uL}{v}, \ 10^{4} \le \operatorname{Re}_{L}$	$\leq 5.10^{5}$,	∟ délka desky		
turbulentní proudění kolem	$Nu_x = 0.0405 \text{ Re}_{L.}^{4/5} \text{ Pr}$.1/3	$0,6 \le \Pr \le 60$		
	$5.10^5 \le \text{Re}_L \le 10^8$				
laminární proudění v trubce	Nu=4.36 pro <i>q</i> =kon	ist. na stě	ně		
	Nu=3.66 pro <i>T</i> =kor	nst. na stě	ně		
turbulentní proudění v	$Nu = 0,023 \text{ Re}^{0.8} \text{ Pr}^{m}$,	1	m=0.3 pro chlazení		
trubce	$3.10^4 \le \text{Re}_L \le 10^6$		m=0.4 pro ohřev		
laminární, přechodové a	$\mathrm{Nu} = C_1 \mathrm{Re}^{C_{\hat{e}}} \mathrm{Pr}^{0,38}$				
trubky	Re	C1	C2		
	0,4 ÷ 4	0,989	0,330		
	4 ÷ 40	0,911	0,385		
	40 ÷ 4 000	0,683	0,466		
	4 000 ÷ 40 000	0,193	0,618		
	40 000 ÷ 400 000	0,0266	0,805		
laminární, přechodové a	$\operatorname{Nu}_{\mathrm{D}} = C_1 \operatorname{Re}_{D,\max}^m$	р	ro	N_L $\rangle 10$,	
trubek, N_L je počet trubek	$2000 \le \operatorname{Re}_{D,\max}^{m} \le 4000$	00 $Pr = 0.7$	7, konstanty	C₁ a <i>m</i>	
	jsou dány v tabulce				
	<i>S∟</i> – vodorovná roz trubek	teč trube	k, S ₇ – svislá	i rozteč	

systém přímý	S⊤/D=	1.25	S⊤/D=	1.50	S⊤/D=	2.00	S⊤/D=	3.00
S_L/D	C1	т	C1	т	C1	т	C1	т
1.25	0.348	0.592	0.275	0.608	0.100	0.704	0.063	0.752
1.50	0.367	0.586	0.250	0.620	0.101	0.702	0.068	0.744
2.00	0.418	0.570	0.299	0.602	0.229	0.632	0.198	0.648
3.00	0.290	0.601	0.357	0.584	0.374	0.581	0.286	0.608
svstém kříž	$S_T/D = $	1.25	St/D=	1.50	St/D=	2.00	St/D=	3.00
systém kříž S∟/D	$S_T/D = C_1$	1.25 <i>m</i>	Sτ/D= C1	1.50 <i>m</i>	S _T /D= C ₁	2.00 <i>m</i>	Sτ/D= C1	3.00 m
systém kříž <i>S⊾∕D</i> 1.000	S _T /D= ⁻ C ₁	1.25 <i>m</i>	S _T /D= C ₁ 0.497	1.50 <i>m</i> 0.558	S _T /D= C ₁	2.00 m	S _T /D= C ₁	3.00 <i>m</i>
systém kříž <i>S∟/D</i> 1.000 1.125	S⊤/D= ′ C₁	1.25 <i>m</i>	S _T /D= C ₁ 0.497	1.50 <i>m</i> 0.558	S _T /D= C ₁ 0.478	2.00 <i>m</i> 0.565	S₁/D= C₁ 0.518	3.00 <i>m</i> 0.560
systém kříž <i>S∟/D</i> 1.000 1.125 1.250	S⊤/D= ⁻ C₁ 0.518	1.25 <i>m</i> 0.556	S _T /D= C ₁ 0.497 0.505	1.50 <i>m</i> 0.558 0.554	S _T /D= C ₁ 0.478 0.519	2.00 m 0.565 0.556	S _T /D= C ₁ 0.518 0.522	3.00 <i>m</i> 0.560 0.562
systém kříž S∟/D 1.000 1.125 1.250 1.500	S _T /D= ⁻ C ₁ 0.518 0.451	1.25 <i>m</i> 0.556 0.568	S _T /D= C ₁ 0.497 0.505 0.460	1.50 <i>m</i> 0.558 0.554 0.562	S _T /D= C₁ 0.478 0.519 0.452	2.00 <i>m</i> 0.565 0.556 0.568	S₁/D= C₁ 0.518 0.522 0.488	3.00 m 0.560 0.562 0.568
systém kříž SL/D 1.000 1.125 1.250 1.500 2.000	S _T /D= ⁻ C ₁ 0.518 0.451 0.404	1.25 <i>m</i> 0.556 0.568 0.572	S _T /D= C ₁ 0.497 0.505 0.460 0.416	1.50 <i>m</i> 0.558 0.554 0.562 0.568	S _T /D= C ₁ 0.478 0.519 0.452 0.482	2.00 m 0.565 0.556 0.568 0.556	S _T /D= C ₁ 0.518 0.522 0.488 0.449	3.00 <i>m</i> 0.560 0.562 0.568 0.570
systém kříž <i>SL/D</i> 1.000 1.125 1.250 1.500 2.000 3.000	S _T /D= ⁻ C ₁ 0.518 0.451 0.404 0.310	1.25 <i>m</i> 0.556 0.568 0.572 0.592	S _T /D= C ₁ 0.497 0.505 0.460 0.416 0.356	1.50 <i>m</i> 0.558 0.554 0.562 0.568 0.580	S _T /D= C ₁ 0.478 0.519 0.452 0.482 0.482	2.00 m 0.565 0.556 0.568 0.556 0.562	S _T /D= C ₁ 0.518 0.522 0.488 0.449 0.482	3.00 <i>m</i> 0.560 0.562 0.568 0.570 0.574

V odborné literatuře je možné nalézt celou řadu vztahů, pomocí nichž je možné stanovit hodnotu Nusseltova čísla. Tyto rovnice jsou určeny převážně empiricky a mají omezenou platnost pro určité specifické případy. V předchozím textu byl uveden pouze velice stručný výběr nejpoužívanějších vztahů.

3 FOURIERŮV ZÁKON - VEDENÍ TEPLA V TYČI

Příklad

Řešte rozložení teploty v tyči o dané délce (obr. 3.1) v programu **ANSYS Fluent**. Úkolem je vytvořit geometrii, výpočetní síť, definovat fyzikální model, fyzikální vlastnosti materiálu, okrajové a počáteční podmínky, matematický model v programech **DesignModeler, ANSYS Meshing a ANSYS Fluent**. Následným krokem je realizovat numerický výpočet a vyhodnotit vypočtené veličiny.

obr. 3.1 – Tyč definované délky

Rozměry řešené oblasti jsou uvedené v Tab. 3.1 a fyzikální vlastnosti jednotlivých materiálu v Tab. 3.2.

Tab. 3.1 Geometrie oblasti

délka oblasti / [m]	0,5
průměr oblasti D [m]	0,08

Tab. 3.2 Fyzikální vlastnosti materiálu (ocel, hliník, měď, dřevo) při 300 K

materiál	dřevo	ocel	hliník	měď
hustota $ ho$ [kg·m ⁻³]	700	8030	2719	8978
měrná tepelná kapacita $c_{ ho}$ [J·kg ⁻¹ ·K ⁻¹]	2310	502,48	871	381
tepelná vodivost	0,173	16,27	202,4	387,6

Okrajové podmínky jsou definovány na stěně vlevo (**"left wall**", viz obr. 3.1) teplotou T_0 a na stěně vpravo (**"right wall**") teplotou T_l (Tab. 3.3). Vnější stěna (**"outer wall**") neboli plášť trubky je uvažována jako izolovaná $q = 0 W/m^2$.

Tab. 3.3 Okrajové podmínky

left wall	right wall	outer wall
$T_0 = 50^\circ C$	$T_l = -10^{\circ}C$	$q = 0 W/m^2$

Matematický model

V této úloze nedochází k proudění, je tedy fiktivně řešeno proudění s nulovou rychlostí, tedy jako laminární proudění.

3.1 ANSYS Workbench

Spusťte program v nabídce **Start/All Programs/ANSYS 2019 R3/Workbench 2019 R3**. Po spuštění programu v panelu nástrojů menu v levé části okna poklepejte na **Fluid Flow (Fluent)**, viz obr. 3.2. Nově vytvořený panel pojmenujte např. jako **Tyc** (nepoužívejte nikdy diakritiku a matematické symboly). Nyní celý projekt uložte **File/Save as** do libovolného adresáře pod libovolným názvem, opět nepoužívejte diakritiku a matematické symboly.

obr. 3.2 – Pracovní prostředí programu ANSYS Workbench 2019 R3 s blokem Fluid flow.

3.2 ANSYS DesignModeler

V první fázi je nutné vytvořit geometrii, a to v programu **DesignModeler**. Klikněte pravým tlačítkem myši na položku **"Geometry"** a vyberte **"New DesignModeler Geometry"** (viz obr. 3.3). Pracovní prostředí programu **DesignModeler** je znázorněno na obr. 3.4. WB Tyc - Workbench

П

X

obr. 3.4 - Program DesignModeler

Vytvoření geometrie

Po spuštění DesignModeleru nastavte vhodné jednotky, ve vašem případě to je metr (meter) – roletové menu **"Units – Meter**". Model v tomto případě představuje jednoduchý válec o definovaných rozměrech. Postup tvorby 3D modelu spočívá ve vytvoření jednoduchého tvaru válce pomocí roletového menu **"Create – Primitives –**

Cylinder" (obr. 3.5). Vybereme souřadnicovou rovinu podstavy válce (XYPlane), dále změníme polohu středu podstavy (Origin), délku osy (Axis) a poloměr dle obr. 3.6.

yc - De	signModele	er								
Create	Concept	Tools	Units	View	Help					
📥 Ne	w Plane			ю	Select: *L	₽ 3≁		R R (8-100	(]S -
💽 Ext	trude			- H .	🖈 🗹					
👘 Re	volve			-	20 🔰 💋 G	enerate	🖤 Share	Topology	🔀 Paramete	ers 🛛 💽
🗞 Sw	/eep			GD	A> Load ND	F =	FlowPath	🥖 Blade	💋 Splitter	
🚯 Ski	in/Loft				•			-	- 0 -	- •
Th Th	in/Surface									
🗣 Fix	ed Radius B	lend								
🐥 Va	riable Radiu	s Blend								
< Ve	rtex Blend									
📏 Ch	amfer									
Pa	ttern									
🛞 Bo	dy Operatio	on								
Во	dy Transfor	mation		•						
Bo Bo	olean									
🌒 Sli	ce									
De	lete			•						
🤣 Po	int									
Pri	imitives				Sphere					
_				-	Box	- 1				
					Parallelepiped	н				
				0	Cylinder					
					Cone	- 1				
				-	Prism					
					Pyramid					
				0	Torus					
				P	Bend					
	yc - De Create K Ne Create K Ne Create Su Su Create Su Su Su Su Su Su Su Su Su Su	yc - DesignModele Create Concept New Plane Extrude Revolve Sweep Skin/Loft Thin/Surface Fixed Radius E Variable Radiu Variable Radiu Vertex Blend Chamfer Pattern Body Operation Body Operation Boolean Slice Delete Point Primitives	yy - DesignModeler Create Concept Tools New Plane Extrude Revolve Sweep Skin/Loft Thin/Surface Fixed Radius Blend Variable Radius Blend Variable Radius Blend Vertex Blend Chamfer Pattern Body Operation Boolean Slice Delete Point Primitives	yy - DesignModeler Create Concept Tools Units New Plane E Extrude Revolve Sweep Skin/Loft Thin/Surface Fixed Radius Blend Variable Radius Blend Variable Radius Blend Variable Radius Blend Chamfer Pattern Body Operation Boolean Slice Delete Primitives	yc - DesignModeler Create Concept Tools Units View	yc - DesignModeler Create Concept Tools Units View Help New Plane Extrude Revolve Skin/Loft Thin/Surface Fixed Radius Blend Variable Radius Blend Variable Radius Blend Vertex Blend Chamfer Pattern Boolean Slice Delete Primitives Primitives Sphere Sph	yy - DesignModeler Create Concept Tools Units View Help New Plane C Select: N New Plane C Select: N New Plane C Select: N New Plane Select: N New Plane C Select: N New Plane Select: N New Plane Fixed Radius Blend Variable Radius Blend Variable Radius Blend Variable Radius Blend Variable Radius Blend Vertex Blend Chamfer Pattern Body Operation Body Transformation Boolean Slice Delete Primitives Point Primitives Sphere Sphere Parallelepiped Cylinder Cone Prism Pyramid Torus F Bend	yy - DesignModeler Create Concept Tools Units View Help New Plane Extrude Extrude Select: *\````````````````````````````````````	yc - DesignModeler Create Concept Tools Units View Help New Plane Extrude Revolve Sweep Skin/Loft Thin/Surface Fixed Radius Blend Variable Radius Blend Variable Radius Blend Variable Radius Blend Chamfer Pattern Boolean Slice Delete Primitives Point Primitives Sphere Share Topology GD Conc Prism Prism Prism Prism Prism Prism Prism Prism Prism Prism Prism Prism Prism Prism Prism Prism	yc - DesignModeler Create Concept Tools Units View Help New Plane Extrude Revolve Sweep Skin/Loft Thin/Surface Fixed Radius Blend Variable Radius Blend Variable Radius Blend Chamfer Pattern Body Operation Body Operation Body Transformation Slice Delete Point Primitives Sphere Box Parallelepiped Cylinder Cone Prism Pyramid Torus Bend

S	Sketching Modeling						
D	Details View						
Ξ	Details of Cylinder1						
	Cylinder	Cylinder1					
	Base Plane	XYPlane					
	Operation	Add Material					
	Origin Definition	Coordinates					
	FD3, Origin X Coordinate	0 m					
	FD4, Origin Y Coordinate	0 m					
	FD5, Origin Z Coordinate	0 m					
	Axis Definition	Components					
	FD6, Axis X Component	0,5 m					
	FD7, Axis Y Component	0 m					
	FD8, Axis Z Component	0 m					
	FD10, Radius (>0)	0,08 m					
	As Thin/Surface?	No					

obr. 3.6 - Nastavení rozměrů válce

obr. 3.7 - Výsledná geometrie

Pojmenování okrajových podmínek

Protože model je trojrozměrný, tak hranice budou plochy oblasti (válce). V první fázi se změní výběrový mód na plochy (**"Face"**), viz obr. 3.8.

obr. 3.8 – Výběr typu výběrového módu ploch ("Face")

Ukázka pojmenování okrajové podmínky **right_wall** dle zadání je znázorněna na obr. 3.9, obr. 3.10. Požadovaná plocha se označí a vybere se nabídka "**Named selection**". V druhé fázi se provede pojmenování NamedSel2 jako **"right_wall**" a **"Generate**", viz obr. 3.10.

obr. 3.9 – Výběr plochy k pojmenování okrajové podmínky (**"Named Selection"**)

Tree Outline ☐	e s r1 Sel2 Body		4
Sketching Modeling			
Details View			p
Details of NamedSel	2		_
Named Selection	NamedSel2		_
Geometry	Apply	Cancel	
Propagate Selection	Yes		
Export Selection	Yes		_
Include In Legend	Yes		_

obr. 3.10 – Pojmenování okrajové podmínky

Okrajová podmínka je nově zobrazena ve stromu příkazů pod nově vytvořenou položkou **"right_wall"**, viz obr. 3.11.

obr. 3.11 – Znázornění okrajové podmínky "right_wall"

Pokud se v oblasti vyskytuje vice ploch stejného významu (např. vstupy pro systém trubek ve výměníku), pak se mohou vybrat všechny (pomocí Ctrl) a pojmenují se jedním pojmenováním.

Analogicky postupujte v případě definování a pojmenování zbylých okrajových podmínek (**"left_wall, outer_wall"**), které jsou znázorněny na obr. 3.12

obr. 3.12 – Pojmenování okrajových podmínek

Nyní je geometrie modelu kompletní a připravená pro tvorbu výpočetní sítě v programu **ANSYS Meshing**. Celý projekt můžete uložit z programu **DesignModeler** příkazem **"File/Save Project"** a program zavřete. Přejděte zpět do programu **Workbench**. Celý projekt můžete kdykoliv uložit z **Workbench** příkazem **"File/Save"**. Pokud je geometrie vytvořena bez chyb, tak u položky **Geometry** je uvedená zelená "fajfka" (obr. 3.13).

🚾 Tyc - Workbench			-		×
Tyc - Workbench					
🎦 💕 🛃 🔍 🕞 Project					
👔 Import 🗟 Reconnect 😰 Refresh Project	🗲 Update Project 📲 ACT Start Page				
Toolbox 👻 🕂 🗙	Project Schematic				τ χ
Analysis Systems Coupled Field Static Coupled Field Static Coupled Field Transient Design Assessment Eigenvalue Buckling Electric Explicit Dynamics Fluid Flow - Blow Molding (Polyflow) Fluid Flow - Bow Molding (Polyflow) Fluid Flow (Fluent) Fluid Flow (Fluent) Fluid Flow (Fluent) Fluid Flow (Polyflow) Harmonic Acoustics Harmonic Response Hydrodynamic Response Hydrodynamic Response Ic Engine (Fluent) Magnetostatic Modal Modal Modal Acoustics	A 1 C Flud Flow (Fluent) 2 C Geometry 3 Mesh 4 Setup 5 Solution 6 Results tyc Spouštění A	Geometrie OK NSYS Meshingu			

obr. 3.13 – Prostředí Workbench po vytvoření geometrie bez chyb

Následně můžete přejít na tvorbu výpočetní sítě v programu **ANSYS Meshing**, který se spustí z prostředí **Workbench** obdobně jako program **DesignModeler**, viz obr. 3.13.

3.3 ANSYS Meshing

V projektu dvojklikem na položku **"Mesh"** spustíte program **ANSYS Meshing**, který umožňuje síťování vygenerovaných součásti (obr. 3.14). Tento krok může trvat i několik minut podle složitosti modelu.

obr. 3.14 – Prostředí programu ANSYS Meshing

Po spuštění programu a načtení součástí máte několik možností, jak vytvořit síť. Od jednoduchého schématu, kdy v podstatě pouze poklepete na položku **"Mesh"** (pravým

tlačítkem) a zvolíte příkaz "**Generate mesh**" (velice jednoduchá automatická síť podle přednastavených parametrů a pro velkou většinu případu nevyhovující, (obr. 3.15) až po uživatelem přesně definovaný tvar sítě.

obr. 3.15 – Vytvoření jednoduché automatické sítě

V této aplikaci je výpočetní oblast ve tvaru válce, takže jako elementy se použijí pravidelné šestistěnné elementy s vytvořením tzv. zhuštění výpočetní sítě směrem k vnější stěně **"outer wall"**. Tzn. použije se kombinace automatické sítě s uživatelem definované sítě.

K vytvoření výpočetní sítě v tomto příkladu využijete tři operace:

- Automatické nastavení velikosti elementu
- Definování parametrů zhuštění u stěny
- Definování metody Sweep

Automatické nastavení typu elementů sítě

Kliknutím na položku **"Mesh"** v panelu **"Outline"** obr. 3.16 získáte informace o parametrech síťování v panelu **"Details of Mesh"**. V tomto panelu se vyskytuje řada položek. Rozkliknutím položky **"Sizing"** dostanete předdefinované informace o velikosti elementů. Tyto hodnoty můžete měnit podle vlastní potřeby. Hodnoty jsou uvedené v jednotkách (metr), pokud jsou uvedené např. v jednotkách milimetr, tak je nutné změnit jednotky (v roletovém menu **"Units"**). Předefinujte velikost elementu v položkách **"Element Size, Max Size, Defeature Size, Curvature Min Size"**.

D	etails of "Mesh"	🔻 🖡 🗖	×
+	Display		^
-	Defaults		
	Physics Preference	CFD	
	Solver Preference	Fluent	
	Element Order	Linear	
	Element Size	1,e-002 m	
	Export Format	Standard	
	Export Preview Surface Mesh	No	
-	Sizing		
	Use Adaptive Sizing	No	
	Growth Rate	Default (1,2)	
	Max Size	1,e-002 m	
	Mesh Defeaturing	Yes	-
	Defeature Size	1,e-002 m	
	Capture Curvature	Yes	
	Curvature Min Size	1,e-002 m	
	Curvature Normal Angle	Default (18,°)	
	Capture Proximity	No	
	Bounding Box Diagonal	0,54882 m	
	Average Surface Area	9,7006e-002 m ²	
	Minimum Edge Length	0,50265 m	
+	Quality		
+	Inflation		
÷	Assembly Meshing		
+	Advanced		

obr. 3.16 - Details of Mesh

Pro tělesa tvaru válce resp. kvádru se pro síťování použije metoda **Sweep**. Použijte funkci **"Method**" v nabídce **"Mesh/Insert/Method**" a dále metodu **"sweep**", která je vhodná pro geometrii válce, viz Obr. 3.17.

M 🔛 🖛	;	Context									
File	Home	Mesh	Display	Selec	tion	Auto	mation				
Duplicate	≗ Cut ⊂ Copy Paste Outline	× Delete Q Find ₽ <mark>₽</mark> Tree ▼	Generate Mesh	A Coo ☆ Coo ♡ Com	ied Se rdina i ment	election te System Inser	© Image ₫ Sectio ➡ Anno t	es▼ on Plane tation	<mark>₩ ft</mark> Units	Worksheet	Keyframe Animation
Outline 👓							aaaa 👻 🏨	$\square \times$	0	२ 📦 📦	n 🖓
Name	t* Iodel (A3 @ Geome Materi & Coordi	 Search Ou Search Ou Search Ou Search Ou Search Ou 	utline 🗸 .	•							
⊑ ¢ (Insert	, 	•	2	Method			1		
		Update			10	Sizing					-
	5	Generate N	lesh		V	Contact	Method	C			
		Preview Show	•		▲	Refinen Face Me		mesh ty meshes	types used to generate so on scoped entities.		
	5	Create Pind	ch Controls		9	Mesh C	(i) Pres	s F1 for h	eln		-
		Group All S	Similar Child	ren		Match 0	- Tres	STITIOT	icip.		
	٠	Clear Gene	rated Data			Pinch					
	а <mark>т</mark> ь	Rename		F2		Inflation					
		Start Recor	ding		92 (50)	Mesh N	unt umbering				
						Contact	Match Gr	nun			
					••• •••	Contact	Match	oup			
						Node M	erge Grou	p			
					\$ ‡	Node M	erge				
					•	Node M	ove				
					_						

Obr. 3.17 - Vložení metody

Vybereme objem "Geometry". Musíme nadefinovat "Source Face" v tabulce "Details of Sweep Method". V položce "Src/Trg Selection" vybereme možnost "Manual Source". Jako "Source" označíme plochu left_wall. Počet elementů po délce lze zadat v "Type" ("number of division" a "sweep num divs"). Vloží se počet elementů po délce oblasti (např. number of division=100). Nastavení a výsledná oblast je zobrazena na

Obr. 3.18.

D	1.11. C.10		
De	etails of "Sweep Meth	nod" - Method ▼ 4 🗆 🗙	
	Scope Scoping Mathod	Coometry Selection	
ŀ	Scoping Method	1 Rody	
	Definition	1 body	
	Suppressed	No	
ŀ	Method	Sween	
ŀ	Algorithm	Program Controlled	
ŀ	Flement Order	Lise Global Setting	
ŀ	Src/Tra Selection	Manual Source and Target	
ŀ	Source	1 Face	
	Target	No Selection	
	Free Eare Mech Type	Quad/Iri	
ŀ	Type	Number of Divisions	
ŀ	Sween Num Dive	Default	
ŀ	Element Ontion	Solid	
	Advanced	5010	
	Sween Rise Tune	No Bias	
De	etails of "Sweep Meth	od" - Method	
ЭГ	Scope		
	Scoping Method	Geometry Selection	
ŀ	Geometry	1 Body	
ЭÌ	Definition		
ľ	Suppressed	No	
t	Method	Sweep	
ŀ	Algorithm	Program Controlled	
Ī	Element Order	Use Global Setting	
	Src/Trg Selection	Manual Source and Target	
	Source	1 Face	
	Target	1 Face	
	Free Face Mesh Type	Quad/Tri	
	Туре	Number of Divisions	
	Sweep Num Divs	100	
	Element Option	Solid	
E	Advanced		
	Sweep Bias Type	No Bias	

Obr. 3.18 - Nastavení parametrů pro metodu Sweep

Následně můžeme síť vygenerovat kliknutím na příkaz **"Generate"**. Výsledná výpočetní síť je zobrazena na Obr. 3.19.

Obr. 3.19 - Výsledná výpočetní síť

Je patrné, že síť není zhuštěná u stěny, což je vhodné v případě proudění s turbulencí. Proto se použije na opravu sítě metoda **Inflation**.

Definování parametrů Inflation (zhuštění u stěny)

Inflation definujeme pro plochu "Source Face" v nabídce **"Mesh/Insert/Inflation**". Tuto nabídku dostanete pravým tlačítkem myši (obr. 3.20).

obr. 3.20 - Výběr nástroje "Inflation"

V obecném případě pro vytváření Inflation je nutné specifikovat následující parametry:

- geometrie (2D nebo 3D oblasti), kde bude Inflation vygenerována
- hranice, při které bude Inflation vytvořena (ve 2D je to hrana (čára), ve 3D je to plocha)
- parametry Inflation, tj. zmenšení první buňky u hranice, počet vrstev (buněk)
 Inflation, růstový faktor charakterizující postupné zvětšování velikosti buněk,

Charakteristika parametrů definujících Inflation je znázorněna na *obr. 3.21*. Žlutě zvýrazněné položky **"No Selection"** je nutné vybrat z geometrie modelu. Položka **"Geometry/No Selection"** představuje výběr oblasti (plochy nebo objemu), kde se bude Inflation. Změnou **"Geometry Selection"** lze vybírat podle jména oblasti. Nejdříve klikněte do okna **"No Selection"** (přejde na **"Apply"**, viz *obr. 3.22*). Následně vyberte oblast kliknutím na model (dojde k zelenému podbarvení). Výsledek potvrdíte tlačítkem **"Apply"**.

D	Details of "Inflation" - Inflation 👻 🕂 🗖 🗙						
=	Scope						
	Scoping Method	Geometry Selection					
	Geometry	No Selection					
Ξ	Definition						
	Suppressed	No					
	Boundary Scoping Method	Geometry Selection					
	Boundary	No Selection					
	Inflation Option	Smooth Transition					
	Transition Ratio	Default (0,272)					
	Maximum Layers	5					
	Growth Rate 1,2						
	Inflation Algorithm Pre						

obr. 3.21 - Charakteristika Inflation

Г	etails of "Inflation" - Inflatio	n	
-	Scope		
	Scoping Method	Geometry Selection	
	Geometry	Apply	Cancel
-	Definition		
	Suppressed	No	
	Boundary Scoping Method	Geometry Selection	
	Boundary	No Selection	
	Inflation Option	Smooth Transition	
	Transition Ratio	Default (0.272)	
	Maximum Layers	5	
	Growth Rate	1.2	
	Inflation Algorithm	Pre	

obr. 3.22 – Výběr oblasti, ve které bude Inflation vytvořena

Analogicky postupujte v případě definování hranice, vůči které je definována Inflation. Hranu definujte v položce **"Boundary"** (*obr. 3.23*). Nejdříve klikněte do pole **"No Selection"**. Následně vyberte hranu modelu. Poté klikněte na hranici a položku **"Apply"**. Výsledek je patrný z obr. 3.23.

Details of "Inflation	" - Inflatio	n 🕶 🕂 🗖 🗙	
- Scope			
Scoping Method		Geometry Selection	
Geometry		1 Face	
- Definition		·	
Suppressed		No	
Boundary Scopin	g Method	Geometry Selection	
Boundary		1 Edge	
Inflation Option		Smooth Transition	
Transition Rati	io	Default (0.272)	
Maximum Laye	ers	5	
Growth Rate		1.2	
Inflation Algorith	ım	Pre	

obr. 3.23 – Výběr hrany k definování Inflation

Poté definujte parametry Inflation (*obr. 3.23*)

- faktor charakterizující postupné zmenšování velikosti buněk 0,272
- počet vrstev (buněk) vrstvy Inflation 5
- růstový faktor 1,2

Následně můžeme síť vygenerovat kliknutím na příkaz **"Generate"**. Výsledná výpočetní síť včetně zhuštění je zobrazena na Obr. 3.24.

Obr. 3.24 - Výsledná výpočetní síť

Uložte projekt v ANSYS Meshing příkazem "File/Save Project".

3.4 ANSYS Fluent

Před spuštěním **ANSYS Fluent** je třeba ověřit, jestli u položek **"Geometry**" a **"Mesh**" je zelená fajfka. Pokud tomu tak není, potom se musí provést update **"Geometry**" nebo **"Mesh**" příkazem **"Update".** V tomto případě je nutné provést **"Update**" pro "**Mesh**" pravým tlačítkem myši (obr. 3.25).

obr. 3.25 – Znázornění značky pro Update výpočetní sítě

Výsledný projekt v prostředí Workbench je znázorněn na obr. 3.26.

Program **ANSYS Fluent** se spustí pomocí položky **"Setup"** dvojklikem. Po spuštění programu **Fluent** se ověří rozměr oblasti (3D), a zda výpočet bude proveden s obvyklou nebo dvojnásobnou přesností (**"Double Precision"**). Definujte **"Double Precision"** (obr. 3.27). Dále je vhodné nastavit při větším množství buněk paralelní výpočet v **"Processing Options/Paralel".** Počet jader je např. 4.

•	A	
1	S Fluid Flow (Fluent)	Double Precision
2	📴 Geometry 🗸 🖌	
E.	🞯 Mesh 🗸 🖌	
1	🍓 Setup 🛛 🥃 🖌	Eluent Launcher 2019 B3 (Settin
5	Solution	
	🔗 Results 🛛 🖓 🖌	ANSYS Fluent Launcher
		 2D 3D Display Options Display Mesh After Reading Do not show this panel again ACT Option Load ACT Show More Options OK Cancel Help _

obr. 3.27 – Spouštění programu ANSYS Fluent 2019 R3

Pak se otevře program ANSYS Fluent (obr. 3.28).

A:tyc Fluent@ntb_mech_koz30 [3d, dp, pbns, Iam] [ANSYS Academic Teaching Introductory]						
🖉 🎕 🏐 😂 🦻 🗛 🧱						
<u>F</u> ile Domain Phy	rsics User-Defined Solution	n Results	View Pa	arallel Desigr	1 🔺	
Mesh Display Info * Ocheck* Quality *	Scale Scale	Zones ⁵ Delete [+] Append Deactivate B Replace Mes Activate C Replace Zone	Interfaces Mesh Mesh	Mesh Models	Adapt	Surface + Create 🚽
Filter Text	General	(?				
 Setup Beneral 	Mesh Scale Check Report Q Display Units Solver Type Velocity Formul Pressure-Based Density-Based Absolute Relative Time Steady Transient Gravity	uality lation				

obr. 3.28 – Základní prostředí programu ANSYS Fluent

V první fázi je nutné provést kontrolu výpočetní sítě jednak zobrazením všech hranic (okrajových podmínek) a celé oblasti příkazem **"Domain/Mesh/Display**" (obr. 3.29). Označením všech položek v okně **"Surfaces**" se zobrazí okrajové podmínky.

obr. 3.29 – Kontrola sítě a okrajových podmínek

Dále je nutné provést kontrolu jednotek rozměrů sítě příkazem **"Domain/Mesh/Scale"** (obr. 3.30). Pokud je výpočetní oblast vytvořená v jiných rozměrech (mm, cm, ...), lze pomocí příkazu **"Scaling"** a **"Specify Scaling Factors"** převést rozměry na základní jednotky metry (m).

<u>F</u> ile	Domain	Physics	User-Defir	ed Solu	ution	Results	View
 Display Info Units Outline View	Mesh	Scale. C Transf V V Make I Task Pa	E form E Polyhedra	Combine 🖕 Separate 🖕	Zones Delete Deactivate Activate		Interf Me: Me: @@ Ove
Filter Text → Setup © General → ↔ Models → ≧ Materia → Cell Zon → E Boundal ⊘ Dynamic © Beferen	Is le Conditions ry Con 2 Scale N C Mest c Vali	Genera Mesh Sc Dis Aesh ctents	l ale	Check Repo	ort Quality Scaling	(7) ×	
Image: Product of the set							
 Results Surfaces Graphics Franciss Franciss Animatic Reports Parameters 8 	culatio			Close Help	Scale	Unscale	

obr. 3.30 – Kontrola jednotek rozměrů

Další kontrola se týká počtu buněk sítě příkazem **"Domain/Mesh/Info/Size"**. Následně se zobrazí v textovém okně (Console) řádek s informací o počtu buněk (**Cells**), ploch (**Faces**) a uzlech (**Nodes**) sítě, viz obr. 3.31.

```
writing right_wall (type wall) (mixture) ... Done.
writing outer_wall (type wall) (mixture) ... Done.
writing left_wall (type wall) (mixture) ... Done.
writing zones map name-id ... Done.
Mesh Size
Level Cells Faces Nodes Partitions
0 75500 229355 78477 1
l cell zone, 4 face zones.
```

obr. 3.31 – Zobrazení počtu buněk, ploch a uzlů

Následuje kontrola existence záporných objemů v síti příkazem **"Domain/Mesh/Check/Perform Mesh Check**" (obr. 3.32), což se může vyskytnout u komplikovaných geometrií a v tom případě je nutné síť vytvořit znovu.

```
Console
Domain Extents:
    x-coordinate: min (m) = 0.000000e+00, max (m) = 5.000000e-01
    y-coordinate: min (m) = -7.999985e-02, max (m) = 8.000000e-02
    z-coordinate: min (m) = -7.984678e-02, max (m) = 7.985624e-02
Volume statistics:
    minimum volume (m3): 1.785957e-08
    maximum volume (m3): 2.940157e-07
    total volume (m3): 1.002666e-02
Face area statistics:
    minimum face area (m2): 3.571914e-06
    maximum face area (m2): 5.880315e-05
Checking mesh......
Done.
```

obr. 3.32 – Kontrola sítě na existenci záporných objemů

Pokud jsou všechny údaje v pořádku, postupuje se v nabídce menu zleva doprava a shora dolů. Řada podstatných příkazu, které se vyskytují v záložkovém menu, jsou zároveň v levém roletovém panelu (obr. 3.33).

A:tyc Fluent@ntb_mech_koz30 [3d, dp, pbn	ns, Iam] [ANSYS Academic Teaching Introductory]				
🖉 🎕 🎯 z 🤌 🗛 🛱	2				
<u>F</u> ile Domain Phy	ysics User-Defined Solution Re	tesults View	Parallel Design 🔺		
Mesh Display Info Units Deck Quality	Scale Scale	Append Mesh Replace Mesh Replace Zone	Mesh Models Dynamic Mesh Mixing Planes Turbo Topology	Adapt Surface ne / Coarsen + Create - & Manage e -	
Outline View	Task Page	8			Mesh
Filter Text	General Mesh				
General O Models O Models O Models O Models Call Zone Conditions Dynamic Mesh Dynamic Mesh Reference Plaues Areference Plaues Methods Methods Controls Report Definitions O Monitors Calculation Activities O Report Definitions O Monitors Calculation Calculation Calculation Calculation Suffaces O Graphics O Graphics O Graphics During During During During Suffaces O Graphics During During	Scale Check Report Quality Display Units Solver Type Velocity formulation Pressure-Based Absolute Density-Based Relative				
 → Reports Parameters & Customization 	Console				

obr. 3.33 – Nabídka příkazů definujících matematický model

První příkazy z nabídky **"Solver" ("Physics/Solver")** definují typ řešiče, **"Time-Steady"** pro časově nezávislé řešení. Dále definujte **"Type-Pressure-Based"**, **"Velocity Formulation-Absolute"**. Nastavení příkazů **"Solver"** je na obr. 3.34. Dále je zde možno definovat vnější sílu (např. gravitační) pomocí zrychlení **"Gravity"** v libovolném směru a změnit fyzikální jednotky **"Units"** ze soustavy SI na jinou soustavu jednotek nebo jen jednotky vybraných veličin.

<u>F</u> ile	Domain	Physi	cs	User-	Defined	So	lution
General	Solver © Operating Co Reference V	onditions alues	🗌 Ene	ergy 🕌	Radiatio Heat Exe Viscous	M on changer	iodels Multiph Čų Species L Discrete
Outline View		Task Pa	age				×
Filter Text		Genera	il -				?
Setup Gen Gen	eral dels terials IZone Conditions indary Conditions namic Mesh erence Values erence Frames med Expressions	Mesh Solver Type O Pr	ressure-E ensity-Ba	Ch Uni Based sed	eck ts Velocit @ Ab @ Re	Report Qua Cy Formula isolute ilative	lity
● Solution ● Mel ※ Cor ◎ Rep ● ● Mo ■ Cell ● Initi ● Cell	thods trols oort Definitions nitors Registers alization ulation Activities	Time St Th Grave	teady ransient vity				

obr. 3.34 – Příkazy z nabídky "Solver"

Další příkazy jsou z nabídky **"Models"** (**"Physics/Models"**), kde se definuje fyzikální podstata úlohy dle velice názorné nabídky, tedy **"Multiphase"**, **"Energy"**, **"Species"**, **"Discrete Phase"** resp. **"Viscous"**, kde lze definovat laminární proudění, turbulentní proudění pomocí různých turbulentních modelů a lze také řešit speciální případ proudění ideální kapaliny **"Inviscid"** (obr. 3.35).

<u>F</u> ile	Domain	Ph	ysics	User-Defined	Solution	Resu	lts	Vi
	Solver				Models			
10	Operating Cor	nditions.	 En(Radiation	🕰 Multip oger 🏹 Speci	hase	Structure	
General	🛃 Reference Va	lues		Viscous	ی کرد انجا	ete Phase	ooo More	-
Outline View		Tasl	c Page		2			
Filter Text	eral Jels Multiphase (Off) Energy (Off) Viscous (Laminar) Radiation (Off) Heat Exchanger (Of Species (Off) Discrete Phase (Off) Solidification & Mel Acoustics (Off) Structure (Off) Eulerian Wall Film (C	Mod Ma Er Vi Ra Hi Sp f) Di Sc O Ac titii St El Df	lels dels lultiphase - hergy - Off iscous - Lan adiation - O eat Exchang becies - Off iscrete Phas blidification coustics - O ructure - Of ulerian Wall ectric Poten	Off ff ger - Off & Melting - Off ff Film - Off tial - Off				

obr. 3.35 – Charakteristika příkazu "Models"

V této úloze je řešena problematika přenosu tepla tzn., definujte tedy pouze rovnici energie **"Energy"**. V úloze nedochází k proudění, je tedy fiktivně řešeno proudění s nulovou rychlostí jako laminární **"Laminar"** (obr. 3.36).

Task Page	🚺 Viscous Model 🛛 🗙
Models Models Multiphase - Off	Model Inviscid Laminar Spalart-Allmaras (1 eqn)
Energy - On Viscous - Laminar Radiation - Off Heat Exchanger - Off Species - Off Discrete Phase - Off Solidification & Melting - Off Acoustics - Off Structure - Off	 k-epsilon (2 eqn) k-omega (2 eqn) Transition k-kl-omega (3 eqn) Transition SST (4 eqn) Reynolds Stress (7 eqn) Scale-Adaptive Simulation (SAS) Detached Eddy Simulation (DES) Large Eddy Simulation (LES)
Eulerian Wall Film - Off Electric Potential - Off Edit	Options Uiscous Heating Low-Pressure Boundary Slip OK Cancel Help

obr. 3.36 – Nastavení matematického modelu řešeného problému

Definování materiálu tyče

Typ **"Fluid"** definuje proudící médium (voda, vzduch,...). Typ **"Solid"** definuje pevný materiál (ocel, měď,...). V tomto příkladu definujeme přenos tepla v pevné tyči (materiál **"Solid"**), typ materiálu je ocel. Materiál definujte příkazem **"Physics/Materials/Create/Edit Materials"**, viz obr. 3.37.

Results	View	Parallel	Design	•					
⊿] ⊄י∣ æ ∞∞	Structure Acoustics More Create/Edit	Phases List/Shov Theraction	s v All 📄 ons 📑	Zones Cell Zones Boundaries Profiles	Model Specific Discrete Phase DTRM Rays Shell Conduction				
۱ 🗖 🖬	Create/Edit Materials					×			
Ni	Name air Chemical Formula		Material Type fluid Fluent Fluid Materials air Mixture Fluence		Order Materials by Name Chemical Formula				
					Fluent Database				
	Properties		none						
	Density (kg/m3) Cp (Specific Heat) (j/kg-k) Thermal Conductivity (w/m-k)		.225			▼ Edit ▲			
			constant 1006.43 constant 0.0242 constant			▼ Edit			
						▼ Edit			
]	Vis	▼ Edit ▼							
	Change/Create Delete Close Help								

obr. 3.37 Charakteristika příkazu "Materials"

Vyberte položku **"Solid"** v databázi **ANSYS Fluentu** (položka **"Fluent Database"**) změňte nabídku **"Material Type"** na **"Solid".** Dále v nabídce materiálů (**"Fluent Solid Materials"**) označte **"steel"**. Přesun do matematického modelu potvrďte příkazem **"Copy"**, viz obr. 3.38. Fyzikální vlastnosti (Density, Specific Heat, Thermal Conductivity,...) jsou vidět v dolní části nabídky a mohou se měnit podle požadavků řešitele.

ame	Material Type	Order Materials by
teel	solid	 Name
hemical Formula	Fluent Solid Mater	rials O Chemical Formula
	steel	V Church Database
	Mixture	Huent Database
	none	User-Defined Data
Properties		
Fluent Database Mat	terials	· · · · · · · · · · · · · · · · · · ·
Fluent Solid Materials	; [1/13]	Solid
gypsum (caso4_2h20 nickel (ni)	0)	Order Materials by Name
steel		Chemical Formula
		*
Copy Materials from	Delete	
Copy Materials from Properties	n Case Delete	- View 1
Copy Materials from Properties	n Case Delete Density (kg/m3) constant 8030	View
Copy Materials from Properties	Delete Density (kg/m3) constant 8030	View
Copy Materials from Properties	Delete Density (kg/m3) constant 8030 c Heat) (j/kg-k) constant	▼ View * View
Copy Materials from Properties	Delete Density (kg/m3) constant 8030 c Heat) (j/kg-k) constant 502.48	▼ View
Copy Materials from Properties Cp (Specific Thermal Condu	Delete Density (kg/m3) constant 8030 c Heat) (j/kg-k) constant 502.48 uctivity (w/m-k) constant	View View View
Copy Materials from Properties	Delete Density (kg/m3) constant 8030 c Heat) (j/kg-k) constant 502.48 uctivity (w/m-k) constant 16.27	View View View
Copy Materials from Properties	Delete Density (kg/m3) constant 8030 c Heat) (j/kg-k) constant 502.48 uctivity (w/m-k) constant 16.27 ty (siemens/m) constant	View View View View
Copy Materials from Properties	Delete Density (kg/m3) constant 8030 c Heat) (j/kg-k) constant 502.48 uctivity (w/m-k) constant 16.27 ty (siemens/m) constant 8330000	 View View View View View

obr. 3.38 – Výběr materiálu ocel ("steel") z databáze ANSYS Fluent

Výsledkem je přesun materiálu **"steel**" do položky **"Materials**" (obr. 3.39)

Task Page	X
Materials	(?)
Materials	
Fluid	
air	
Solid	
steel	
aluminum	

Výsledné přiřazení materiálu **"steel"** do oblasti provedete příkazem **"Physics/Zones/Cell Zone Conditions"**, viz obr. 3.40. Nejdříve zvolte typ (**"Type"**) **"solid"**. Poté **"Material Name"** – **"Steel"** a potvrďte tlačítkem OK (obr. 3.40).

Task Page	×										
Cell Zone Conditions	() ()										
Zone Filter Text		≻									
solid		2									
Solid			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX								
Zone Name											
solid											
Material Name steel Edit											
Frame Motion Source Terms											
Mesh Motion Fixed Values											
Reference Frame	Mesh Motion	Source Terms	Fixed Values								
Rotation-Axis Origin	Rotation-Axis Direction										
X (m) 0	•	×O	•								
Y (m) 0		YO	•								
Z (m) 0	•	Z	•								
Ľ											
	OK	Help									
Phase Type	П										

obr. 3.40 – Charakteristika příkazu "Cell Zone Conditions"

Definování okrajových podmínek

Okrajové podmínky definujeme pomocí menu "Physics/Zones/Boundary Conditions", viz obr. 3.41.

obr. 3.41 – Okrajové podmínky (**"Boundary Conditions"**) a typy okrajových podmínek

Přednastavený typ okrajové podmínky v programu **ANSYS Fluent** je stěna (**"wall**"). Pokud pojmenujeme určitou okrajovou podmínku v programu **ANSYS Meshing** dle zvyklostí **ANSYS Fluentu** bude k této podmínce přiřazen specifický typ. Typy okrajových podmínek lze definovat dle nabídky viz obr. 3.41. Např. pro pojmenování axis je přiřazen typ okrajové podmínky osa (**"axis**"). Dále pro pojmenování **inlet** je přiřazen typ vstupu (**"velocity inlet**") proudícího média do oblasti a pro pojmenování **outlet** je přiřazen typ výstupu (**"pressure outlet**") proudícího média z oblasti atd.

Specifikace okrajových podmínek

• left wall – typ "wall" - "Edit" ($T_0 = 50 \circ C = 323.15K$), viz obr. 3.42.

Task Page	🖸 Wall	×
Boundary Conditions	Zone Name [left_wall	
Zone Filter Text	solid	
interior-solid	Momentum Thermal Radiation Species DPM Multiphase UDS Wall Film Potential	Structure
left_wall outer_wall right_wall	Thermal Conditions Heat Flux Temperature (k) 323.15 Temperature Wall Thickness (m) 0 Convection 0 Radiation Heat Generation Rate (w/m3) 0 Mixed Shell Conduction 1 Layer via System Coupling via Mapped Interface	▼ ▼
	OK Cancel Help	

obr. 3.42 – Definování okrajové podmínky "left_wall"

• **right_wall** – typ **"wall" - "Edit"** $T_l = -10^{\circ}C = 263.15K$, viz obr. 3.43.

Task Page	📧 Wall									×
Boundary Conditions	Zone Name right_wall	Zone Name right_wall								
Zone Filter Text	solid	e								
interior-solid	Momentum Th	ermal	Radiation	Species	DPM	Multiphase	UDS	Wall Film	Potential	Structure
left_wall outer_wall	Thermal Condit	ions								
right_wall	O Heat Flux			Te	emperature	e (k) 263.15				•
	 Temperatu 	re		Wa	l Thickness	s (m) 0				•
	Convection			Heat Cone	ration Rate	(w/m3) 0				- -
	Radiation			neat Gene		(w/ms) 0				
	O Mixed					Shell	Conductio	n 1 Layer		Edit
	🔵 via System	Couplir	ng							
	🗌 🔘 via Mapped	Interfa	ace							
	Material Name aluminum		▼ Edit							
				(OK Can	cel Help				

obr. 3.43 – Definování okrajové podmínky "right_wall"

• **outer_wall** – typ **"wall" - "Edit"** $q = 0 W/m^2$, viz obr. 3.44.

Task Page 🛞	🖸 Wali	×
Boundary Conditions	Zone Name outer_wall Adjacent Cell Zone solid	
interior-solid left_wall outer_wall right_wall	Momentum Thermal Radiation Species DPM Multiphase UDS Wall Film Potential S Thermal Conditions •<	tructure

obr. 3.44 – Definování okrajové podmínky "outer_wall"

Inicializace

Následně se provede standartní inicializace **(Standard Initialization)** výpočtové oblasti, tzn. definování počátečních podmínek do celé oblasti pomocí příkazu **"Solution/Initialization/Method"**. Definujte standartní inicializací **"Method-Standard"** pomoci nabídky **"Options"**, viz obr. 3.45. V této úloze definujeme pouze teplotu. Definujte střední hodnotu teploty T = 293.15K. Inicializaci potvrďte tlačítkem **"Initialize"** (obr. 3.45).

Outline View	Task Page	X
Filter Text	Solution Initialization	?
⊖ Setup	Initialization Methods	
General General General General Models Arrials	Hybrid InitializationStandard Initialization	
Cell Zone Conditions	Compute from	
Boundary Conditions		- Potvrzení
📀 🖽 Internal	Reference Frame	inicializace
● ➡ Wall Ø Dynamic Mesh P Reference Values	Relative to Cell Zone Absolute	1
🕑 🔽 Reference Frames	Initial Values	
f> Named Expressions	Gauge Pressure (pascal)	
% Methods	0	
🕺 Controls	X Velocity (m/s)	
Report Definitions	0	
(*) Q Monitors	Y Velocity (m/s)	
Initialization	0	
 Calculation Activities 	Z Velocity (m/s)	
Run Calculation	0	
Results Surfacer	Temperature (k)	
 ♦ Ø Graphics ♦ ✓ Plots ♦ ☑ Animations 	293.15	
Reports Parameters & Customization	Initialize Reset Patch	
	Reset DPM Sources Reset Statistics	
	VOF Check	
	TOT UNUN	

obr. 3.45 - Inicializace výpočtové oblasti

Výpočet

Po provedení inicializace se spustí iterační výpočet příkazem **"Solution/Run Calculation**", viz obr. 3.46. Je nutné zadat počet iterací (**Number of Iterations**). Předdefinovaná hodnota je 0. Zadává se hodnota dosti vysoká, např. 1000, kdy se předpokládá, že bude dosažena konvergence.

obr. 3.46 – Příkaz "Run Canculation"

Následně se spustí iterační výpočet tlačítkem **"Calculate"**. Konvergenci lze sledovat jak graficky, tak číselně (obr. 3.47). Protože neřešíme proudění, tak složky rychlosti ani tlak (**continuity**) se nepočítají. Pouze se počítá teplota (**energy**) a jakmile je dosaženo požadované nastavené přesnosti (**"Results/Residuals"**), výpočet je ukončen poznámkou, že řešení je zkonvergováno (**solution is converged**), viz obr. 3.47

obr. 3.47 – Průběh konvergence

Vyhodnocení výpočtu

Nejprve potřebujeme vytvořit podélný řez geometrií. Zobrazíme si geometrii pomocí příkazu **"Domain/Display"** abychom zjistili, ve které ose musíme řez vytvořit. Řez vytvoříme příkazem **"Domain/Surface/Create/Iso-Surface"**. Jako **"Surface of Constant"** vybereme **"Mesh"** a vybereme osu z (viz Obr. 3.48). Kliknutím na *Compute* zjistíme souřadnice v ose z. Jelikož chceme mít řez uprostřed válce, zadáme do *Iso-Values* hodnotu, která je uprostřed těchto souřadnic. Kliknutím na *Create* řez potvrdíme.

Iso-Surface	×	
New Surface Name		
odelny_rez) From Surface Filter Text 🔂 🔁 🗮 🐺	
Surface of Constant	left wall	
Mesh	outer_wall	
	podelny_rez	
Z-Coordinate	right_wall	
Min (m) Max (m)		
-0.07984678 0.07985624		
Iso-Values (m)		
0		
	solid	
	-	
Create	Compute Close Help	
- Results	2 Velocity (m/s)	
Graphics	0	

Obr. 3.48 - Vytvoření řezu (Iso-Surface)

Pro přehlednost se uvádějí možnosti vyhodnocení, tj. vyplněné izočáry teploty, ostatní veličiny nemají smysl, i když jsou nabízeny, jako je tlak, rychlost atd. Vyplněné izočáry teploty vyhodnotíme příkazem **"Results/Graphics/Contours"**. Izočáry vyhodnotíme ve vytvořeném podélném řezu. Nastavení vykreslení izočar teploty je patrné z obr. 3.49.

Contours		×
Options	Contours of	
✓ Filled	Temperature	•
✓ Node Values	Static Temperature	•
Global Range	Min (k) Max (k)	
Clin to Range	263.15 323.15	
Draw Profiles	Surfaces Filter Text	=, =, =,
Coloring	left_wall outer_wall	
 Banded Smooth 	right_wall	
Levels Setup		
	New Surface	
	Display Compute Close Help	

obr. 3.49 – Nastavení vykreslení izočar teploty příkazem "Contours"

Výsledek vyhodnocení izočar teploty je patrný z obr. 3.50, kde je vidět lineární pokles teploty od 323.15K do 263.15K. Toto je ve shodě s analytickým řešením (přímka spojující okrajové hodnoty teploty).

obr. 3.50 – Rozložení teploty v celé oblasti [K]

Kromě toho lze vyhodnotit rozložení teploty po délce oblasti příkazem "Results/Plots/XY Plot", viz obr. 3.51. V nabídce "Y Axis Function" vyberte "Temperature/Static Temperature" a v položkách "Surfaces" vyberte podélný řez oblastí. Do "Plot Direction" je třeba zadat správný směr, ve kterém leží geometrie válce.

 Initialization Calculation Activities 	E Solution XY Plot	×
 Run Calculation Results Surfaces Graphics Plots File 	Options V Node Values Position on X Axis Position on Y Axis Write to File	Plot Direction Y Axis Function X 1 Temperature Y 0 Static Temperature Z 0 X Axis Function
 Profile Data Interpolated Data IFFT XY Plot Histogram Scene Animations Parameters & Customization 	File Data	Load File Free Data Direction Vector Surfaces Filter Text Fo F
	Plot Ax	New Surface , res) Curves) Close) [Help]

obr. 3.51 – Charakteristika příkazu "XY Plot"

Vykreslení rozložení teploty po délce oblasti je patrné z obr. 3.52.

obr. 3.52 – Rozložení teploty po délce oblastí

Velmi zajímavé je vyhodnocení množství tepla procházejícího stěnami **left wall** a **right wall**. Vyhodnocení provedeme příkazem "**Results/Reports/Fluxes**", viz obr. 3.53. V nabídce "**Options**" vyberte "**Total Heat Transfer Rate**" a v nabídce "**Boundaries**" označte **left wall** a **right wall**. Výsledné hodnoty jsou uvedené v položce "**Results**" a Tab. 3.4.

Flux Reports		×
Options		
 Mass Flow Rate Total Heat Transfer Rate Radiation Heat Transfer Rate 	Boundaries Filter Text To Tx interior-solid left_wall	Results 45.26611387269372
	outer_wall right_wall	-44.39726345435234
Save Output Parameter	4	Net Results (w) 0.8688504
	Compute Write Close Help]

obr. 3.53 – Příkaz "Fluxes"

Tab. 3.4 –	Teplo	procházející	stěnou
------------	-------	--------------	--------

teplo procházející stěnou Q [V	N] ocel	
left wall	45.27	
right wall	-44.40	

Přestup tepla procházející elementy stěny v jednotkách [W·m⁻²] lze také vyhodnotit podrobně v každém místě stěny. V tomto jednoduchém případě je konstantní, protože rozložení teplot je ve směru z lineární a síť je po délce s konstantním krokem, tedy existuje jediná směrnice (derivace teploty je tok), ale v obecné geometrii tomu tak nebude. Vykreslení provedeme příkazem **"Results/XY Plot"**, viz obr. 3.54. V nabídce **"Plot Direction"** definujte X=0, Y=1, Z=0, v nabídce **"Y Axis Function"** vyberte **"Wall Fluxes/Total Surface Heat Flux"** a v položkách **"Surfaces"** vyberte **left_wall** a **right_wall**. Na grafu se objevuje čára hodnoty uvnitř plochy a několik hodnot, které jsou na hranici a jsou modifikovány v souvislosti s okrajovou podmínkou na "outer wall".

obr. 3.54 – Rozložení toku tepla stěnami "left wall a right wall"

3.5 Varianty výpočtů

 Definujte odlišný materiál (Tab. 3.5) výpočtové oblasti (tyče). Realizujte numerické výpočty a vzájemně porovnejte výsledky tak, jak jsou uvedené ve vzorovém příkladě.

materiál	dřevo	ocel	hliník	měď
hustota $ ho$ [kg·m ⁻³]	700	8030	2719	8978
měrná tepelná kapacita ${\cal C}_{ ho}$ [J·kg ⁻¹ ·K ⁻¹]	2310	502.48	871	381
tepelná vodivost λ [W·m ⁻¹ ·K ⁻¹]	0.173	16.27	202.4	387.6

Tab. 3.5 – Fyzikální vlastnosti materiálu (ocel, hliník, měď, dřevo)

 Definujte varianty odlišných teplotních okrajových podmínek na stěnách left wall a right wall tak, jak jsou uvedené v Tab. 3.6, proveďte výpočet a porovnejte výsledky.

Tah	36 -	Variantv	okraiov	ích r	odmínek na	stěnách	left wall	a right wall
rap.	0.0 -	vananty	UNIAJOV	γ τη σ		Sichach	icit wan	a nynt wan

	OKRAJOVÉ PODMÍNKY				
Varianta	left wall	right wall	right wall	right wal	I
	$T_0 [°C]$	$T_l [°C]$	$q_l[W.m^{-2}]$	$\alpha[W.m^{-2}.K^{-1}]$	$T_{\infty}[^{\circ}C]$
A	50	-10			
В	-20	100			
С	50		162700		
D	50		0		
E	50			1000	-10

kde T_0 je teplota na "left wall"

- T_l je teplota na "**right wall**"
- q_l je měrný tepelný tok na "**right wall**"
- T_{∞} je teplota okolí
- α je součinitel přestupu tepla na "**right wall**"
- Připravte oblast řešení sestávající ze tří tyčí odlišných průměrů, při definování geometrie využijte přesun souřadného systému vždy na konec tyče ("Create/New Plane"). Okrajové podmínky jsou stejné. Při síťování využijte sweep metodu na první a třetí tyč, druhá tyč vzhledem k jinému pruměru se vysíťuje jen pomocí inflation

Tvorba geometrie:

Sketching Modeling

D	etails View		ą
Э	Details of Pipe22		
	Cylinder	Pipe22	
	Base Plane	XYPlane	
	Operation	Add Frozen	
	Origin Definition	Coordinates	
	FD3, Origin X Coordinate	0 m	
	FD4, Origin Y Coordinate	0 m	
	FD5, Origin Z Coordinate	0 m	
	Axis Definition	Components	
	FD6, Axis X Component	0.3 m	
	FD7, Axis Y Component	0 m	
	FD8, Axis Z Component	0 m	
	FD10, Radius (>0)	0.01 m	
	As Thin/Surface?	No	

Details View

D	etails View	4
-	Details of EndPipe22	
	Plane	EndPipe22
	Sketches	0
	Туре	From Face
	Subtype	Outline Plane
	Base Face	Selected
	Use Arc Centers for Origin?	Yes
	Transform 1 (RMB)	None
	Reverse Normal/Z-Axis?	No
	Flip XY-Axes?	No
	Export Coordinate System?	No
	Export Coordinate System?	No

D	Details View 4		
-	Details of Pipe32		
	Cylinder	Pipe32	
	Base Plane	EndPipe22	
	Operation	Add Frozen	
	Origin Definition	Coordinates	
	FD3, Origin X Coordinate	0 m	
	FD4, Origin Y Coordinate	0 m	
	FD5, Origin Z Coordinate	0 m	
	Axis Definition	Components	
	FD6, Axis X Component	0 m	
	FD7, Axis Y Component	0 m	
	FD8, Axis Z Component	0.05 m	
	FD10, Radius (> 0)	0.015 m	
	As Thin/Surface?	No	

Sketching Modeling		
etails View	д	
Details of EndPipe32		
Plane	EndPipe32	
Sketches	0	
Туре	From Face	
Subtype	Outline Plane	
Base Face	Selected	
Use Arc Centers for Origin?	Yes	
Transform 1 (RMB)	None	
Reverse Normal/Z-Axis?	No	
Flip XY-Axes?	No	
Export Coordinate System?	No	

Sketching Modeling			
Details View	4		
Details of PipeOut22			
Cylinder	PipeOut22		
Base Plane	EndPipe32		and the second second
Operation	Add Frozen		and the second
Origin Definition	Coordinates		
🗌 FD3, Origin X Coordinate	0 m		
FD4, Origin Y Coordinate	0 m		
FD5, Origin Z Coordinate	0 m		
Axis Definition	Components		
FD6, Axis X Component	0 m		
FD7, Axis Y Component	0 m		
FD8, Axis Z Component	0.2 m		
FD10, Radius (>0)	0.01 m	and the second se	
As Thin/Surface?	No	and the second	· · · · · ·
		and the second	

Okrajové podmínky:

Síťování:

Inflation na plochu right_wall, hranice je kružnice, sweep se použije jen na třetí trubku (další trubka mění pruměr, proto nelze pokračovat také sweepem)

Inflation na plochu left_wall, hranice je kružnice, sweep se použije jen na první trubku

Inflation na objem druhé trubky, hranice je plocha trubky

Výsledná síť

Další výpočet probíhá podle přechozí úlohy.

4 LAMINÁRNÍ PROUDĚNÍ – PROUDĚNÍ VODY MEZI DESKAMI

Příklad

Řešte proudění vody mezi dvěma nekonečně velkými deskami, viz *obr. 4.1*. Fyzikální model je dán tvarem oblasti, typem proudění a hydraulickými parametry proudění. Numerický výpočet definujte v programovém prostředí **ANSYS Fluent**. K tvorbě výpočetní oblasti (geometrie) a výpočetní sítě využijte programy **DesignModeler a ANSYS Meshing**.

obr. 4.1 – Schéma oblasti

Voda vtéká do oblasti rychlostí 0.05 m.s⁻¹ a vystupuje do ovzduší, kde je relativní tlak 0 Pa. Úloha je dána jako 3D model a představuje proudění v oblasti tvaru kvádru o dané délce, tloušťce a šířce, viz Tab. 4.1. Fyzikální vlastnosti proudícího média jsou dány v Tab. 4.2.

Tab. 4.1 – Geometrie obla	sti
---------------------------	-----

délka oblasti / [m]	0.5
výška oblasti <i>s</i> [m]	0.02
šířka oblasti <i>b</i> [m]	0.1

Tab. 4.2 – Fyzikální vlastnosti vody

hustota vody ρ [kg.m ⁻³]	998
dynamická viskozita 77 [kg.(m.s) ⁻¹]	0.001003

Okrajové podmínky

Na **"inletu**" je definována rychlostní okrajová podmínka (VELOCITY INLET) a na **"outletu**" je dána podmínka statického tlaku (PRESSURE-OUTLET). Na stěnách (**"top wall, bottom wall**") je okrajová podmínka typu WALL, kde se předpokládá nulová rychlost proudění (je předdefinovaná). Na boční stěny je definována okrajová podmínka typu SYMMETRY (nekonečně velké desky). Okrajové podmínky jsou uvedené v *Tab. 4.3*.

Tap. 4.3 – Okrajove podminky

inlet – střední rychlost U_s [m.s ⁻¹]	0.05
outlet – statický tlak <i>p</i> [Pa]	0

Matematický model

Výběr matematického modelu bude řešen v dalších kapitolách, nyní se ponechá předdefinovaný (laminární model proudění).

Kriterium laminarity je Reynoldsovo číslo:

$$\operatorname{Re} = \frac{u.d}{v} = \frac{0.05 \cdot 0.02}{1.10^{-6}} = 1000$$

Proudění je tedy laminární.

4.1 Vytvoření geometrie a sítě

V prostředí **Workbench** vyberte **"Fluid Flow /Fluent"** a přetáhněte jej do pracovního okna. Klikněte pravým tlačítkem na **"Geometry"** a vyberte "New DesignModeler Geometry". Vytvořte geometrii kvádru o daných rozměrech pomocí příkazu **"Create/Primitives/Box"** (Obr. 4.2)**.** Kvádr potvrďte kliknutím na **"Generate"**.

Sketching Modeling		ANS) 2019
Details View		
 Details of Box1 		
Box	Box1	
Base Plane	XYPlane	
Operation	Add Material	
Box Type	From One Point and Diagonal	
Point 1 Definition	Coordinates	
FD3, Point 1 X Coordinate	0 m	
FD4, Point 1 Y Coordinate	0 m	
FD5, Point 1 Z Coordinate	0 m	
Diagonal Definition	Components	
🗌 FD6, Diagonal X Component	0,5 m	
FD7, Diagonal Y Component	0,02 m	
FD8, Diagonal Z Component	0,1 m	
As Thin/Surface?	No	0.000 0.00(m) Z

Obr. 4.2 - Vytvoření geometrie kvádru

V další fázi pojmenujte okrajové podmínky, tak jak jsou popsány na *obr. 4.1*. Přejmenování okrajových podmínek se provede pomocí příkazu **"Named Selection**". Výsledné označení a pojmenování všech okrajových podmínek je patrné z *obr. 4.3*.

obr. 4.3 – Označení okrajových podmínek

Síťování provedete v **ANSYS Meshing.** Protože se jedná o proudění mezi deskami, je nutné vložit na plochu "inlet" Inflation k oběma stěnám (**top wall, bottom wall**). Vytvořte Inflation pro obě hrany najednou identicky jako v kap. 3.3 použitím příkazu "**Meshing/Inflation**" (parametry jsou uvedené na obr. 4.4). Následně použijte metodu "**Sweep**" dle kap. 3.4. Parametry jsou uvedené na obr. 4.4. Následně vygenerujte novou výpočetní síť příkazem "**Generate Mesh**". Výsledná podoba výpočetní sítě včetně parametrů síťování je znázorněna na *obr. 4.5*.

				Details of "Sweep Method" - Method			
			Ξ	Scope			
D	etails of "Inflation" - Inflatio	n 🗤 🖵 🗖 🗖 🗙		Scoping Method	Geometry Selection		
	6			Geometry	1 Body		
비	Scope		_ =	Definition			
	Scoping Method	Geometry Selection		Suppressed	No		
	Geometry	1 Face		Method	Sweep		
	Definition		_	Algorithm	Program Controlled		
	Commenced	N	-	Element Order	Use Global Setting		
	Suppressed	NO	_	Src/Trg Selection	Manual Source		
	Boundary Scoping Method	Geometry Selection	_	Source	1 Face		
	Boundary	2 Edges		Target	Program Controlled		
	Inflation Option	Smooth Transition	_	Free Face Mesh Type	All Quad		
	Transition Ratio	0.2	_	Туре	Number of Divisions		
		10	_	Sweep Num Divs	200		
	Maximum Layers	10	_	Element Option	Solid		
	Growth Rate 1.2		Ξ	Advanced			
	Inflation Algorithm	Pre		Sweep Bias Type	No Bias		

obr. 4.4 – Parametry zhuštění (Inflation) a metody Sweep

Dutlir	1e	
8 N	ame 👻 Search Outline 🗸	
Detect		•
Detail	s or mesn	
	piay play Style	Lise Geometry Setting
E Def	aults	ose debinetry setting
Phy	sics Preference	CFD
Sol	ver Preference	Fluent
Eler	ment Order	Linear
	Element Size	3.0 mm
Exp	ort Format	Standard
Exp	ort Preview Surface Mesh	No
- Sizi	ng	
Use	Adaptive Sizing	No
	Growth Rate	Default (1.2)
	Max Size	3.0 mm
Me	sh Defeaturing	Yes
	Defeature Size	3. mm
Cap	oture Curvature	Yes
	Curvature Min Size	3.0 mm
	Curvature Normal Angle	Default (18.0°)
Cap	oture Proximity	No
Bou	Inding Box Diagonal	510.29 mm
Ave	rage Surface Area	20667 mm ²
Min	nimum Edge Length	20.0 mm
+ Qua	ality	
- Infl	ation	
Use	Automatic Inflation	None
Infl	ation Option	Smooth Transition
	Transition Ratio	0.272
	Maximum Layers	5
	Growth Rate	1.2
Infl	ation Algorithm	Pre
Vie	w Advanced Options	No
- Ass	embly Meshing	
Met	thod	None
- Adv	vanced	
Nur	mber of CPUs for Parallel Part Meshing	Program Controlled
Stra	aight Sided Elements	
Rig	id Body Behavior	Dimensionally Reduced
Tria	ngle Surface Mesher	Program Controlled
Тор	ology Checking	Yes
Pin	ch Tolerance	Default (2.7 mm)
Ger	nerate Pinch on Refresh	No
- Sta	tistics	
	Nodes	148512
	Elements	137775

obr. 4.5 – Výsledná podoba výpočetní sítě pro proudění mezi deskami

4.2 Výpočet ve Fluentu

Po vytvoření výpočetní sítě, se vraťte zpět do prostředí **Workbench**, *obr. 4.6*. Před spuštěním programu **ANSYS Fluent** je nutné provést update výpočetní sítě příkazem **"Update"** u položky **"Mesh"** pravým tlačítkem (mělo objevit zelené zatržení). Program **ANSYS Fluent** se spustí pomocí položky **"Setup"** dvojklikem. Nezapomeňte nastavit výpočet s vyšším řádem přesnosti **"Double precision"** a paralelní výpočet pomocí **"Processing Options/Paralel"**.

🔤 laminarní proudeni mezi deskami - Workb	inch	-	×
File View Tools Units Extensions	obs Help		
🎦 🚰 🛃 🚺 Project			
Import 🏼 🖗 Reconnect 🕼 Refresh Proje	t 🕖 Update Project 📲 ACT Start Page		
Toolbox 🔻 🕂 🗙	Project Schematic		₽ X
Analysis Systems			
🕞 Coupled Field Static			
🙀 Coupled Field Transient	A		
Design Assessment	1 💽 Fluid Flow (Fluent)		
Eigenvalue Buckling	2 🔤 Geometry		
Electric	3 Mesh		
🔝 Explicit Dynamics			
🔇 Fluid Flow - Blow Molding (Polyflow)	4 Will Setup 🖉 🖌		
S Fluid Flow-Extrusion (Polyflow)	5 🗑 Solution 👕 🖌		
🖸 Fluid Flow (CFX)	6 😥 Results 🛛 🖓 🖌		
🚱 Fluid Flow (Fluent)	Jaminarni proudani mazi deskami		
🔇 Fluid Flow (Polyflow)	fanniarni producin niczi deskani		
Harmonic Acoustics			

obr. 4.6 – Panel ANSYS Workbench po provedení update

Po spuštění programu ANSYS Fluent zkontrolujte rozměry výpočetní oblasti a okrajové podmínky stejně jako v předchozí úloze (kap. 3.4)

Pokud jsou všechny údaje v pořádku, postupuje v nastavení úlohy v ANSYS Fluentu:

- Příkaz pro nastavení solveru Physics General/Solver-Type (Pressure-Based)
- Příkaz pro nastavení časově nezávislého řešení Physics General/Solver -Time (Steady)
- Příkaz pro nastavení gravitační síly Physics General/Solver Gravity (no)
- Příkaz pro nastavení fyzikálních jednotek Physics General/Solver-Units SI
- Příkaz pro nastavení laminárního modelu Physics Models Viscous Model – Laminar

Definice fyzikálních vlastností tekutiny

- Příkaz pro kopírování vody z databáze Physics Materials-Create/Edit Materials – Fluent Database Materials (vybrat "Material Type" water-liquid a kopírovat příkazem Copy)
- Příkaz pro definování tekutiny v oblasti proudění Physics Zones-Cell Zones Conditions (označte Zone (solid) a vyberte material water-liquid). Zóna musí být typu Fluid

Definování okrajových podmínek

bottom wall – typ wall (definujte pevnou nepohybující se stěnu, defaultní nastavení)

- inlet typ velocity inlet (definujte velikost rychlosti dle Tab. 4.3)
- outlet typ pressure outlet (definujte velikost statického tlaku dle Tab. 4.3)
- top wall typ wall (definujte pevnou nepohybující se stěnu, defaultní nastavení)
- symmetry1, symmetry2 typ symmetry

Inicializace

Následně se provede inicializace proudového pole, tzn. definování počátečních podmínek do celé oblasti pomocí příkazu **"Solution-Initialization-Method(Standard/Options)**". Hodnoty jsou definovány na základě vstupní okrajové podmínky **"Compute from Inlet"**, viz *obr. 4.7*.

Outline View	Task Page	×
Filter Text	Solution Initialization	?
 Setup General Models Materials Cell Zone Conditions Dynamic Mesh Reference Values K Reference Frames Named Expressions Solution Methods Controls Report Definitions Cell Registers Initialization Calculation Activities Run Calculation Surfaces Graphics Plots Reports 	Initialization Methods Hybrid Initialization Standard Initialization Compute from inlet Reference Frame Absolute Initial Values Gauge Pressure (pascal) X Velocity (m/s) 0.05 Y Velocity (m/s) 0 Z Velocity (m/s) 0 	
	Initialize Reset Patch	
	Reset DPM Sources Reset Statistics	

obr. 4.7 – Inicializace na základě vstupní okrajové podmínky

Před spuštěním výpočtu nastavte stabilizační schémata výpočtu jednotlivých proměnných příkazem "Solution/Methods", viz *obr. 4.8* s ohledem na stabilitu numerického výpočtu.

Task Page	×
Solution Methods	?
Pressure-Velocity Coupling	
Scheme	
Coupled	-
Spatial Discretization	
Gradient	
Least Squares Cell Based	-
Pressure	
Second Order	-
Momentum	
Second Order Upwind	•
Transient Formulation	
Non-Iterative Time Advancement	
Frozen Flux Formulation	
✓ Pseudo Transient	
Warped-Face Gradient Correction	
High Order Term Relaxation Options	
Structure Transient Formulation	

obr. 4.8 – Nastavení stabilizačních schémat

Poté spustíte iterační výpočet **"Solution-Run Calculation"**. Je nutné zadat počet iterací **"Number of Iterations"**. Předdefinovaná hodnota je 0. Zadává se hodnota dosti vysoká, např. 1000, kdy se předpokládá, že bude dosažena konvergence, viz *obr. 4.9*. Konvergenci lze sledovat jak graficky, tak číselně.

Outline View	Task Base
outline view	Task Page
Filter Text	Run Calculation
 Setup ② General ③ ③ Materials ④ △ Materials ④ Cell Zone Conditions ④ Boundary Conditions ④ Dynamic Mesh ☑ Reference Values ↑ ☑. Reference Frames ▲ Named Expressions 	Check Case Update Dynamic Mesh Pseudo Transient Settings Fluid Time Scale Time Step Method Time Scale Factor Automatic • 1 • Length Scale Method Verbosity Conservative • 0 •
Solution Methods	Parameters
X Controls	Number of Iterations Reporting Interval
 Report Definitions Monitors Cell Registers Initialization 	1000 1 Profile Update Interval 1
📀 🏶 Calculation Activities	Solution Processing
Run Calculation	Statistics
 Results Surfaces Graphics Image: Vertical state 	Data Sampling for Steady Statistics Data File Quantities
Scene	Solution Advancement
Reports	Calculate
Parameters & Customization	

obr. 4.9 – Nastavení počtu iterací a spuštění výpočtu

Výpis reziduálů se aktivuje z menu příkazy **"Results/Residuals/Residuals Monitors**". Průběh reziduálů je znázorněn na *obr. 4.10*. Hodnoty reziduálů (relativních chyb) pro každou počítanou proměnnou (tlak – continuity, rychlost ve směru x - x-velocity, rychlost ve směru y - y-velocity a rychlost ve směru z - z-velocity) musí být menší než 0.001. Při dosažení této přesnosti je výpočet sám ukončen.

obr. 4.10 – Průběh reziduálů

V dalších krocích bude následovat vyhodnocení této varianty výpočtu. Pro lepší přehlednost je možno vytvořit pomocné řezy o daných souřadnicích, ve kterých se zobrazí např. vektory rychlosti. Následovat bude vytvoření příčných rovin ve vzdálenostech x=0.1m, 0.2m, 0.3m a 0.4m a podélného řezu středem oblasti v ose z (*obr. 4.11*).

obr. 4.11 – Vytvořené roviny k vyhodnocení

Vytvoření příčných rovin ve vzdálenostech x=0.1m, 0.2m, 0.3m a 0.4m provedeme příkazem **"Results/Surface/Create/Iso-suface**". Vytvoření příčné roviny ve vzdálenosti x=0.1m je patrné z *obr. 4.12*. V nabídce **"Surface of Constant**" vyberte **Mesh/X-Coordinate**". Dále zadejte hodnotu 0.1 u položky **Iso-Values**. A pojmenujte řez např. **x-0.1m** v okně **New Surface Name**. Obdobným způsobem vytvořte řezy ve vzdálenosti x=0.2m, 0.3m a 0.4m. Stejně provedeme vytvoření podélného řezu tím, že vybereme **Z-Coordinate**.

Iso-Surface		×
New Surface Name x-0.1m Surface of Constant Mesh X-Coordinate Min (m) 0 Iso-Values (m)	Max (m) 0.5	From Surface Filter Text
	Create	From Zones (Filter Text)

obr. 4.12 – Vytvoření pomocné roviny ve vzdálenosti x=0.1 m

Poté lze pro ilustraci vyhodnotit, vektory rychlosti, rychlostní profily a vyplněné izočáry. Vektory rychlosti jsou definovány v každé buňce výpočetní domény příkazem **"Results/Graphics/Vectors/"**, kde je možné definovat obarvení vektorů jinou proměnnou (např. teplotou). Pro vyhodnocení vektorů použijeme podélný řez a obarvení velikosti rychlosti **"Color by-Velocity-Velocity Magnitude"**. Dále **"Scale"** umožní zmenšit velikost vektoru a **"Skip"** přeskočit určitý počet vektorů, aby byly vektory méně husté. Proto je pro Scale = 0.3 a Skip = 0. Výsledek je zřejmý z obr. 4.13

obr. 4.13 – Vektory rychlosti pro Scale=0,3 a Skip=0 ($u[m.s^{-1}]$)

Dále vykreslíme profily rychlosti příkazem "**Results/Graphics/Vectors/**" v jednotlivých příčných řezech. V okně "**Surfaces**" vyberte příslušné roviny včetně inletu a outletu (obr. 4.14). Úprava pohledu se provede příkazem "**View/Views**", viz obr. 4.15. Pak se vektory vykreslí příkazem "**Display**"., viz obr. 4.16.

Ontions	Vectors of
	Veloris of
Global Range	Velocity
 Auto Range 	Color by
Clip to Range	Velocity
✓ Auto Scale Draw Mesh	Velocity Magnitude
Shilo	Min (m/s) Max (m/s)
Style	0.0008550463 0.07445044
Scale Skip 0.5 0 4 Vector Options Custom Vectors	Surfaces Filter Text
	New Surface

obr. 4.14 – Definice vektorů rychlosti v příčných řezech

	MUD COCURTION	
Views		×
Views	Actions	lirror Planes [0/1] 🗧 🔫
back bottom front	Auto Scale	symetry
isometric left right top	Previous Save Delete Read	Define Plane) Periodic Repeats
Save Name front	Write	Define
	Apply Camera Close	Help

obr. 4.15 – Menu pro definování pohledu "front".

))	•	•	3	ŧ
9.18e-04	1.14e-02	2.19e-02	3.24e-02	4.28e-02	5.33e-02	6.38e-02	7.08e-02

obr. 4.16 – Vektory rychlosti v jednotlivých řezech ($u[m.s^{-1}]$)

Z vyhodnocení je patrné, že po délce výpočetní oblasti dochází k postupnému formování parabolického rychlostního profilu. Pro dosažení požadovaného tvaru rychlostního profilu (z předchozího řešení) je výpočetní oblast krátká. Kontury velikosti rychlosti se vykreslí příkazem "**Results/Graphics/Contours**", obr. 4.15. Dále se upřesní, jestli se vykreslí velikost rychlosti nebo složky rychlosti případně jiné veličiny v podélném řezu. **Levels** definuje počet izoploch, zatržením **Filled** v **Options** se zobrazí vyplněné izočáry, jinak to jsou vrstevnice, výsledek je na obr. 4.18.

Contours	×				
Options	Contours of				
✓ Filled	Velocity 👻				
✓ Node Values	Velocity Magnitude				
Global Range	Min (m/s) May (m/s)				
Auto Range					
Clip to Range	0.00915544				
Draw Profiles	Surfaces Filter Text				
Coloring	bottom_wall inlet outlet				
Banded	podelny-rez				
Smooth	symetry				
Levels Setup	x-0.1m				
20 1 1	New Surface 💂				
	Display Compute Close Help				

obr. 4.17 – Menu pro vytvoření Vyplněných izoploch velikosti rychlosti

obr. 4.18 – Kontury velikosti rychlosti ve výpočetní oblasti ($u[m.s^{-1}]$)

Podobně se nastaví vykreslení izočar statického tlaku statického tlaku na obr. 4.19

obr. 4.19 – Vyplněné izočáry statického tlaku ve výpočetní oblasti Pstat [Pa]

Další vyhodnocení prezentuje rychlostní profily v jednotlivých řezech od vstupu inlet do výstupu outlet s krokem 0.05 m po délce výpočetní oblasti. Toto vyobrazení je velmi názorné, pokud je třeba porovnat profily veličin na vstupu, výstupu, případně v dalších řezech oblasti. Vykreslení se provede pomocí příkazu "Results/Plots/XY Plot/Solution XY Plot". V nabídce Y Axis Function vyberte Velocity - Velocity Magnitude a v nabídce X Axis Function vyberte Direction Vector. Dále v nabídce Plot Direction upravte X=0 a Y=1 a Z=0, tzn. že budete vykreslovat závislost na Y, viz obr. 4.20 a v nabídce Surfaces označte příslušné řezy.

Options Plot Direction Y Axis Function Velocity Velocity Position on X Axis Y 1 Position on Y Axis Y 1 Velocity Magnitude X Z X Axis Function Write to File Direction Vector Order Points Surfaces Filter Text Free Data Free Data Surfaces Filter Text Free Data You wall X -0.1m X-0.2m X -0.3m X-0.4m New Surface _ Plot Axes Curves Close Help	Solution XY Plot	Longh Loop Te	
✓ Node Values ✓ Position on X Axis Position on Y Axis Write to File Order Points File Data File Data File Data Free Data Surfaces File Data File Data File Data File Data File Data Free Data Surfaces File Data Plot Axes Close Help	Options	Plot Direction	on Y Axis Function
Position on X Axis Position on Y Axis Write to File Order Points File Data File Data File Data File Data File Data File Data File Data File Data File Data File Data File Data File Data	✓ Node Values	× O	Velocity
Position on Y Axis Write to File Order Points File Data File Data Free Data Surfaces File Data Free Data Surfaces File Data Free Data New Surface New Surface Plot Axes Close Help	Position on X Axis	Y 1	Velocity Magnitude
Write to File Order Points File Data File Data Free Data Surfaces File Text Symetry top_wall x-0.1m x-0.2m x-0.3m x-0.4m New Surface _ Plot Axes Close Help	Position on Y Axis	ZO	X Axis Function
File Data File File Data File Free Data Surfaces Free Data Symetry top_wall x-0.1m x-0.2m x-0.3m x-0.4m New Surface _ Plot Axes Curves Close Help	Write to File		Direction Vector
File Data File Data Free Data Surfaces Symetry top_wall x-0.1m x-0.2m x-0.3m x-0.4m New Surface _ Plot Axes Close Help	Order Points		
Plot Axes Curves Close Help	File Data	Free Data	Surfaces Filter Text symetry top_wall x-0.1m x-0.2m x-0.3m x-0.3m x-0.4m
	1	Plot Axes Curve	es) Close Help

obr. 4.20 – Menu pro vytvoření profilů velikosti rychlosti

Z výsledků je patrné formování rychlostního profilu od konstantní hodnoty rychlosti na vstupu **inlet** až po parabolický rychlostní profil na výstupu **outlet** z oblasti (obr. 4.21). Další možnosti získání dat je pomoci nabídky **Options-Write to File,** kdy se provede export dat do externího textového souboru. Tento soubor se pak přečte a upraví v Excelu.

obr. 4.21 – Formování rychlostního profilu

Dalším vyhodnocením je průběh statického tlaku po délce výpočetní oblasti. Statický tlak je vyhodnocen v podélném řezu výpočetní oblasti, viz *obr. 4.22*.

obr. 4.22 – Průběh statického tlaku po délce vyhodnocený v ose trubky (Pstat [Pa])

4.3 Varianty výpočtů

Definujte konvektivní přenos tepla okrajovými tepelnými podmínkami. Vyhodnoťe dle příkladu z kap. 3 a 4.

5 TURBULENTNÍ – PROUDĚNÍ VODY MEZI DESKAMI

Příklad

Řešte proudění vody mezi dvěma nekonečně velkými deskami (obr. 5.1). Fyzikální model je dán tvarem oblasti, typem proudění a hydraulickými parametry proudění. Numerický výpočet definujte v programovém prostředí **ANSYS Fluent**. K tvorbě výpočetní oblasti (geometrie) a výpočetní sítě využijte programy **DesignModeler a ANSYS Meshing**.

obr. 5.1 – Schéma oblasti

Voda vtéká do oblasti rychlostí 1 m.s⁻¹ a vystupuje do ovzduší, kde je relativní tlak 0 Pa. Rozměry oblasti zobrazeny v Tab. 5.1. Úloha je dána jako 3D model a představuje proudění v obdélníkové mezeře o dané délce a tloušťce mezery. Fyzikální vlastnosti proudícího média jsou dány v Tab. 5.2.

délka oblasti [/] [m]	0.5
výška oblasti ${}^{\mathcal{S}}$ [m]	0.02
šířka oblasti b [m]	0.1
Tab. 5.2 – Fyzikální vlastnosti vody	,

Tab.	5.1 –	Geometrie	oblasti
------	-------	-----------	---------

hustota vody ρ [kg.m ⁻³]	998
dynamická viskozita η [kg.(m.s) ⁻¹]	0.001003

Okrajové podmínky

Na inletu je definována rychlostní okrajová podmínka (VELOCITY INLET) a na outletu je dána podmínka statického tlaku (PRESSURE-OUTLET). Na stěnách (top wall, bottom wall) je okrajová podmínka typu WALL, kde se předpokládá nulová rychlost proudění (je předdefinovaná). Okrajové podmínky včetně turbulentních jsou uvedené v Tab. 5.3.

Inlet	Střední rychlost u_s [m.s ⁻¹]	1
	Turbulentní intenzita [%]	1
	Hydraulický průměr [m]	0.02
Outlet	Statický tlak pressure ρ [Pa]	0
	Turbulentní intenzita zpětného proudění [%]	1
	Hydraulický průměr [m]	0.02

Tab. 5.	3 Okra	jové	podmínky
---------	--------	------	----------

Matematický model

Výběr matematického modelu závisí na Reynoldsově čísle.

Kriterium laminarity je Reynoldsovo číslo:

$$\operatorname{Re} = \frac{u.d}{v} = \frac{1.0.02}{1.10^{-6}} = 20000$$

Proudění je tedy turbulentní, ale s nízkou hodnotou Reynoldsova čísla, takže bude použit **RNG** *k*-*ɛ* turbulentní matematický model.

5.1 Geometrie a výpočetní síť

Geometrie a síť budou použity z předchozího příkladu (laminární proudění) a to kopírováním celého panelu v prostředí Workbench. Kopírování se provede příkazem **"Duplicate"**, který je vyvolán pravým tlačítkem myši, viz *obr. 5.2*.

obr. 5.2 – Kopírování panelu příkazem "Duplicate"

Poté panel přejmenujte např. na **"turbulentni proudeni mezi deskami**" a program ANSYS Fluent spustíte příkazem **"Setup**" k modifikaci úlohy na turbulentní proudění mezi deskami. Další nastavení zůstalo z úlohy laminárního proudění, uvádí se jen pro zopakování. Změní se jen okrajové podmínky.

5.2 ANSYS Fluent

Nastavení v ANSYS Fluentu

- Příkaz pro nastavení solveru Setting Up Physics General/Solver-Type (Pressure-Based)
- Příkaz pro nastavení časově závislého řešení Setting Up Physics General/Solver -Time (Steady)
- Příkaz pro nastavení gravitační síly Setting Up Physics General/Solver Gravity (no)
- Příkaz pro nastavení fyzikálních jednotek Setting Up Physics General/Solver-Units – SI
- Příkaz pro nastavení turbulentního modelu Setting Up Physics Models Viscous Model – k-epsilon RNG, stěnová funkce Scable Wall Functions

Definice fyzikálních vlastností tekutiny

 Příkaz pro kopírování vody z databáze - Setting Up Physics – Materials-Create/Edit Materials – Fluent Database Materials (vybrat "Material Type" water-liquid a kopírovat příkazem Copy) Příkaz pro definování tekutiny v oblasti proudění - Setting Up Physics – Zones-Cell Zone Conditions (označte Zone (surface_body) a vyberte material water-liquid)

Definování okrajových podmínek

- bottom wall typ wall (Setting Up Physics-Boundaries definujte pevnou nepohybující se stěnu, defaultní nastavení)
- inlet typ velocity inlet (definujte velikost rychlosti dle Tab. 5.3)
- outlet typ pressure outlet (definujte velikost statického tlaku dle Tab. 5.3)
- top wall typ wall (Setting Up Physics-Boundaries definujte pevnou nepohybující se stěnu, defaultní nastavení)

Inicializace

Následně se provede inicializace proudového pole, tzn. definování počátečních podmínek do celé oblasti pomoci příkazu **"Solving-Initialization-Method(Standard/Options)"**. Hodnoty jsou definovány na základě vstupní okrajové podmínky. Poté upravte stabilizační schémata dle *obr. 4.8*. Následně se spustí iterační výpočet. Výsledné reziduály jsou patrné z *obr. 5.3*.

obr. 5.3 – Průběh reziduálů

V dalších krocích bude následovat vyhodnocení této varianty výpočtu v příčných rovinách ve vzdálenostech x=0.1m, 0.2m, 0.3m a 0.4m a v podélném řezu středem oblasti v ose z (*obr. 5.4*).

obr. 5.4 – Vytvořené rovin k vyhodnocení

Vytvoření příčných rovin je popsáno v předchozí kapitole. Následně lze vyhodnotit, vektory rychlosti, rychlostní profily a vyplněné izočáry. Vektory rychlosti jsou definovány v každé buňce výpočetní domény příkazem **"Postprocessing/Graphics/Vectors"**. Pro vyhodnocení vektorů použijeme podélný řez. Nastavení k vyhodnocení upravte na Scale = 1 a Skip = 1. Výsledné zobrazení je patrné z obr. 5.5.

obr. 5.5 – Vektory rychlosti pro Scale=1 a Skip=1 ($u[m.s^{-1}]$)

Vectors	x
Options	Vectors of
Global Range	Velocity
✓ Auto Range	Color by
Clip to Range	Velocity
 Auto Scale Draw Mesh 	Velocity Magnitude
Chile	Min (m/s) Max (m/s)
Style	0.5864273 1.145277
Scale Skip	Surfaces Filter Text
3 1 -	outlet
Vector Options	podelny-rez symetry
Custom Vectors	top_wall
	x-0.1m x-0.2m
	New Surface 💂
	Display Compute Close Help

obr. 5.6 – Menu pro vyhodnocení vektorů rychlosti v jednotlivých příčných řezech

			€	•	3	2	
						()	• •×,
5.86e-01	6.70e-01	7.54e-01	8.38e-01	9.22e-01	1.01e+00	1.09e+00 1.15	ie+00

obr. 5.7 – Vektory rychlosti v jednotlivých řezech ($u[m.s^{-1}]$)

Z vyhodnocení je patrné, že po délce výpočetní oblasti dochází k postupnému formování turbulentního rychlostního profilu. Kontury velikosti rychlosti v podélném řezu jsou znázorněny na obr. 5.8 a vykreslí se příkazem "**Postprocessing/Graphics/Contours"**.

obr. 5.8 – Kontury velikosti rychlosti ve výpočetní oblasti ($u[m.s^{-1}]$)

Podobně se vykreslí izočáry statického tlaku na obr. 5.9 a effektivní viskozity na obr. 5.10.

obr. 5.9 – Vyplněné izočáry statického tlaku ve výpočetní oblasti Pstat [Pa]

obr. 5.10 – Vyplněné izočáry effektivní viskozity

Další vyhodnocení prezentuje rychlostní profily v jednotlivých příčných řezech, viz obr. 5.11 pomocí grafu. Vykreslení se provede pomocí příkazu "Postprocessing/Plots/XY Plot/Solution XY Plot". V nabídce Y Axis Function vyberte Velocity- Velocity Magnitude a v nabídce X Axis Function vyberte Direction Vector. Dále v nabídce Plot Direction upravte X=0 a Y=1 tzn. chceme vykreslovat závislost na Y a v nabídce Surfaces označte příslušné řezy.

Dalším vyhodnocením je průběh statického tlaku po délce výpočetní oblasti. Statický tlak je vyhodnocen v ose výpočetní oblasti, viz obr. 5.12.

obr. 5.12 Průběh statického tlaku po délce vyhodnocený v ose trubky (P_{stat} [Pa])

5.3 Varianty výpočtů

Definujte konvektivní přenos tepla okrajovými tepelnými podmínkami. Vyhodnoťe dle příkladu z kap. 3 a 4.
6 ŘEŠENÍ VZOROVÉHO PŘÍKLADU – SOUPROUDÝ VÝMĚNÍK

Vytvořte matematický model souproudého výměníku a proveďte trojrozměrnou (3D) numerickou simulaci. Proudící tekutiny ve výměníku jsou v kombinaci vodavzduch. Model souproudého výměníku je patrný z obr. 6.1. Definujte jednotlivé oblasti a parametry dle zadaných okrajových podmínek a výsledky graficky zhodnoťte.

obr. 6.1 – Souproudý výměník ve 3D provedení.

Tab. 6.1 – Rozměry oblasti

H1	0.5	m
D1	0.04	m
D2	0.08	m

V dané oblasti, která představuje souproudý chladič, proudí uprostřed kapalina – voda (**water**) a v okolí proudí vzduch (**air**). Stěny jsou tvořeny ocelovými trubkami o různém průměru.

Tab. 6.2 – Fyzikální vlastnosti materiálu (ocel, voda, vzduch) při 300 K

Materiál	Ocel	Voda	Vzduch	
hustota p	8030	998.2	1.225	[kg.m ⁻³]
měrná tepelná kapacita c_{ρ}	502.48	4182	1006.43	[J.kg ⁻¹ K ⁻¹]
tepelná vodivost <i>λ</i>	16.27	0.6	0.0242	[W.m ⁻¹ K ⁻¹]
viskozita η		0.001003	0.000017894	[kg.m ⁻¹ s ⁻¹]

Tab. 6.3 – Okrajové podmínky

	Inlot air	Inlet	Outlet	Outlet	Wall	Wall	
	inter all	water	air	water	inner	outer	
teplota T	300	363.15				300	[K]
rychlost u	3	0.3					[m.s ⁻¹]
tlak p			0	0			[Pa]
intenzita turbulence <i>I</i>	1	1	1	1			[%]
hydraulický průměr <i>d</i> _h	0.02	0.04	0.02	0.04			[m]

Dále uvažujte s tloušťkou vnitřní stěny (**wall inner**) a vnější stěny (**wall outer**) 003m. Materiál stěny uvažujte ocel.

6.1 Matematický model a teoreticko-empirický odhad úlohy

V této úloze dochází k turbulentnímu proudění, je tedy použit matematický model RNG *k*-*ɛ*. Kritériem turbulence je tzv. Reynoldsovo číslo.

Re pro proudění vody:

$$Re_{voda} = \frac{v \cdot d_h}{v} = \frac{0.3 \cdot 0.04}{1.01e - 06} = 12000$$
(6.1)

Re pro proudění vzduchu:

$$Re_{vzduch} = \frac{v \cdot d_h}{v} = \frac{3 \cdot 0.02}{1.46e - 05} = 4323$$
(6.2)

Výpočet Nusseltova čísla a součinitele přestupu tepla vychází z empirických vztahů, které jsou detailně popsány v literatuře [2]. V následujícím kroku, je proveden pouze analytický výpočet, který bude porovnán s numerickým výpočtem. Ze zadaných parametrů lze spočítat výše uvedené parametry proudění a přestupu tepla (Reynoldsovo číslo je počítáno z maximální rychlosti). Odhad Nusseltova čísla je problematický a je opravdu jen orientační. Na tento odhad navazuje výpočet součinitele prostupu tepla stěnou určeného z Nusseltova čísla vztahem $\alpha = \frac{Nu.\lambda}{d}$ [2].

Výpočet Nusseltova čísla pro oblast proudění vody v trubce:

$$\Pr = \frac{\rho \cdot c_p \cdot v}{\lambda} = \frac{998.2 \cdot 4182 \cdot 1.01e - 6}{0.6} = 6.99$$

$$Nu = 0.023 \cdot Re^{0.8} \cdot Pr^{0.3}$$
(6.3)

$$Nu = 0.023 \cdot 12000^{0.8} \cdot 6.99^{0.3} = 75.5 \tag{6.4}$$

Pak součinitel přestupu tepla je

$$\alpha = \frac{Nu}{d_h} \cdot \lambda = \frac{75.5}{0.04} \cdot 0.6 = 1132.6 \ W. \ m^{-2}. \ K^{-1}$$
(6.5)

Výpočet Nusseltova čísla pro oblast proudění vzduchu kolem trubky:

$$Pr = \frac{\rho \cdot c_p \cdot \nu}{\lambda} = \frac{1.225 \cdot 1006.43 \cdot 1.46e - 5}{0.0242} = 0.707 \tag{6.6}$$

$$Nu = 0.023 \cdot Re^{0.8} \cdot Pr^{0.4}$$

$$Nu = 0.023 \cdot 4323^{0.8} \cdot 0.707^{0.4} = 16.79$$
(6.7)

Pak součinitel přestupu tepla je

$$\alpha = \frac{Nu}{d_h} \cdot \lambda = \frac{16.79}{0.02} \cdot 0.0242 = 20.3 \ W. \ m^{-2}. \ K^{-1}$$
(6.8)

6.2 Tvorba geometrie

Spusťte program **ANSYS 2019 R3** dle kap. 3.1. Nově vytvořený panel pojmenujte např. **Souproudy_vymenik** (nepoužívejte nikdy diakritiku a matematické symboly). Následně uložte celý projekt pod libovolným názvem a spusťte program na tvorbu geometrie **DesignModeler**.

K tvorbě geometrie využijte podrobného návodu v kap. 3.2, protože výsledný model souproudého výměníku je 3D model obdobný 3D modelu tyče. Model souproudého výměníku představuje dvě oblasti (**interior water, interior air**), viz. obr. 6.1. Jedná se tedy o dva válce, které musíme od sebe odečíst. Oblasti vytvoříte identicky pomocí **Create/Primitives/Cylinder** jako v případě příkladu vedené tepla v tyči. Výsledná podoba oblasti **interior water** vytvořená pomocí válce (**Cylinder**) včetně rozměrů je patrná z obr. 6.2.

obr. 6.2 – Vytvoření oblasti interior water ("Cylinder")

Výsledná podoba oblasti **interior air** vytvořená pomocí válce (**"Cylinder**") včetně rozměrů je patrná z obr. 6.3.

obr. 6.3 – Vytvoření oblasti interior air ("Cylinder")

V případě dvou oblastí, které mají být, jako samostatné objemy je nutné definovat v nástrojích **Operation** položku **Add Frozen**. Tím nedojde ke sloučení ploch.

Nyní je potřeba válce od sebe odečíst Boolovskými operacemi pomocí příkazu "Create/Boolean/Operation-Subtract". Jako *target body* vybereme oblast vzduchu a jako *tool body* vybereme oblast vody. Vybereme možnost *Preserve Tool Body*, tím se zachová oblast vody. Kliknutím na *Generate* vzniknou dva oddělené objemy pro oblast vody a oblast vzduchu.

Poslední operací je sloučení objemů do jednoho celku tzn. "new part". Sloučením objemů do jednoho celku bude zachována návaznost výpočetní sítě mezi jednotlivými plochami. Příkaz dostanete označením obou objemů v záložce **2 Parts, 2 Bodies** a pravým tlačítkem myši na nabídku **"Form New Part"**, viz obr. 6.4.

obr. 6.4 – *Sloučení objemů do jednoho celku ("Form New Part")* Výsledná podoba příkazu "Form New Part" je patrná z obr. 6.5.

obr. 6.5 – Výsledná podoba příkazu "Form New Part"

V další fázi pojmenujte okrajové podmínky, tak jak jsou popsány na obr. 6.1 (**inlet air**, **inlet water**, **outlet air**, **outlet water**, **wall inner**, **wall outer**). Pojmenování okrajových podmínek se provede pomocí příkazu "Named Selection" s výběrovým módem na plochy (Face) (3.2). Výsledné označení a pojmenování všech okrajových podmínek je patrné z *obr. 6.6*. Navíc oproti okrajovým podmínkám na stěnách model obsahuje dvě oblasti interiory (objemy), které je nutné definovat (**interior_air a interior_water**).

obr. 6.6 – Označení okrajových podmínek

Tím je model souproudého výměníku v programu DesignModeller kompletní.

6.3 Tvorba výpočetní sítě

Nyní můžete přejít na tvorbu výpočetní sítě v programu **ANSYS Meshing**. Postup spuštění programu je popsán v kap. 3.3. K výsledné podobě výpočetní sítě, která je znázorněna na obr. 6.10 využijte opět stejné nástroje, jako jsou uvedené v kap. 3.3. Vytvořte síť s mezními vrstvami v oblasti **interior water** a **interior air** směrem k **wall inner a wall outer**.

K vytvoření výpočetní sítě v této podobě využijete zhuštění sítě (vytvořit jen na čele obou válců) a sweep. Jedná se tedy o stejné operace, jako byly použity při tvorbě výpočetní sítě v příkladu vedení tepla v tyči. V panelu **Details of Mesh** předefinujte velikost elementu v položkách **Element Size** na hodnotu 4 mm, **Max Size** na hodnotu 10 mm.

Details of "Mesh"	▼ ₽ □ ×
Display	
Display Style	Use Geometry Setting
Defaults	·
Physics Preference	CFD
Solver Preference	Fluent
Element Order	Linear
Element Size	4, mm
Export Format	Standard
Export Preview Surface Mesh	No
Sizing	
Use Adaptive Sizing	No
Growth Rate	Default (1,2)
Max Size	10, mm
Mesh Defeaturing	Yes
Defeature Size	Default (2, e-002 mm)
Capture Curvature	Yes
Curvature Min Size	Default (4, e-002 mm)
Curvature Normal Angle	Default (18,°)
Capture Proximity	No
Bounding Box Diagonal	512,64 mm
Average Surface Area	37287 mm ²
Minimum Edge Length	125,66 mm
Quality	
Check Mesh Quality	Yes, Errors

obr. 6.7 – Definování velikosti elementu

Definování parametrů zhuštění ("Inflation")

Poté definujte parametry zhuštění výpočetní sítě. Počet vrstev (buněk) zhuštění, růstový faktor charakterizující postupné zmenšování velikosti buněk směrem k hranici, poměr zmenšení poslední buňky zhuštěné oblasti. Definujte dvě oblasti zhuštění, a to do každé oblasti (**interior water, interior air**) směrem k stěně **wall inner**.

- Počet vrstev (buněk) mezní vrstvy 6
- Růstový faktor 1,2
- Faktor charakterizující postupné zmenšování velikosti buněk 0,272

Parametry zhuštění (**Inflation**) směrem k stěně **wall inner** pro oblasti **interior water** a **interior air** jsou patrné z obr. 6.8 a obr. 6.9.

D	etails of "Inflation 2" - Inflat	ion	
-	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Face	
-	Definition	·	
	Suppressed	No	
	Boundary Scoping Method	Geometry Selection	
	Boundary	1 Edge	
	Inflation Option	Smooth Transition	
	Transition Ratio	Default (0,272)	, i i i i i i i i i i i i i i i i i i i
	Maximum Layers	6	•
	Growth Rate	1,2	
	Inflation Algorithm	Pre	0.070 (m) Z X

obr. 6.8 – Parametry zhuštění pro oblast interior water

Details of "Inflation" - Inflatio	n ::::::::::::::::::::::::::::::::::::	-
Scope		
Scoping Method	Geometry Selection	
Geometry	1 Face	
Definition	1	
Suppressed	No	
Boundary Scoping Method	Geometry Selection	
Boundary	2 Edges	
Inflation Option	Smooth Transition	
Transition Ratio	Default (0,272)	
Maximum Layers	6	
Growth Rate	1,2	
Inflation Algorithm	Pre	0.070 (m)

obr. 6.9 – Parametry zhuštění pro oblast interior air

Nyní vložíme metodu "Sweep" (nastavení viz kap 3.3) a tím protáhneme povrchovou síť do objemu.

Vygenerování výpočetní sítě provedete příkazem **Generate Mesh**. Výsledná podoba výpočetní sítě je patrná z obr. 6.10.

obr. 6.10 – Výsledná podoba výpočetní sítě

6.4 ANSYS FLUENT

Program ANSYS FLUENT 2019 R3 spustíte obdobným způsobem jako v případě příkladu vedení teply v tyči.

Po úspěšném načtení výpočetní sítě do programu ANSYS Fluent 2019 R3 zkontrolujte:

- jednotky rozměrů sítě příkazem "Domain /Mesh/Scale"
- počet buněk sítě příkazem "Domain/Mesh/Info/Size"
- existenci záporných objemů v síti příkazem "Domain/Mesh/Check"
- výpočetní sítě zobrazením všech hranic (okrajových podmínek) a všech oblasti příkazem "Domain/Mesh/Display"

Při kontrole sítě příkazem **"Domain/Mesh/Display**" jsou všechny okrajové podmínky pojmenovány, tak jak byly nadefinovány v programu **ANSYSMeshing**. S výjimkou jedné nově vytvořené okrajové podmínky **wall_inner-shadow**. Což představuje identickou okrajovou podmínku jako **wall_inner**. Byla vytvořena nová okrajová podmínka **wall_inner-shadow** (obr. 6.11), která společně s podmínkou **wall_inner** definuje tzv. dvouvrstvou stěnu, kdy jedná je součásti oblasti **interior water** a druhá je součásti oblasti **interior air**. Tento typ okrajové podmínky nabízí definování dalších možnosti na přechodu mezi oběma oblastmi.

Mesh Displa	y	×	
Options	Edge Type All	Surfaces Filter Text 🔂 🖶 🖶	
 Edges Faces Partitions Overset 	 Feature Outline 	inlet_air inlet_water outlet_air outlet_water wall_inner	
Shrink Factor F	Feature Angle 20 Interior	wall_inner-shadow wall_outer	
Adjacency)	New Surface 💂	
Display Colors Close Help			

obr. 6.11 – Kontrola okrajových podmínek

Použijte následující nastavení matematického modelu:

- Časově ustálené proudění
- Turbulentní k-ε RNG model proudění pro vodu i vzduch
- Bez uvažování tíhového zrychlení
- Uvažujte přenos tepla (rovnice energie)
- Definujte konstantní fyzikální vlastností vody a vzduchu (nakopírujte materiály z knihovny Fluentu)

V rámci příkazu **"General"** definujte **"Solver"** typu **"Pressure-Based"**. Časově ustálené proudění **"Steady"**. Tíhové zrychlení neuvažujte. Nastavení příkazu **"General"** je patrné z obr. 6.12.

Task Page	K)
General	?
Mesh	
Scale C	heck Report Quality
Display U	nits
Solver	
Туре	Velocity Formulation
Pressure-Based	Absolute
O Density-Based	Relative
Time	
Steady	
O Transient	
Gravity	

obr. 6.12 – Příkaz "General"

Dalším příkazem je **Models ("Physics/Define/Models"),** kde se definuje fyzikální podstata úlohy, tj. proudění s teplem **Energy** a turbulentní **k-ε RNG** model proudění v položce **Viscous** společně se stěnovou funkci **Scable Wall Functions**, viz obr. 6.13.

Viscous Model	A transfer on the	x		
Model	Model Constants			
○ Inviscid	Cmu			
🔿 Laminar	0.0845			
O Spalart-Allmaras (1 eqn)	C1-Epsilon			
k-epsilon (2 eqn)	1.42			
🔿 k-omega (2 eqn)	C2-Epsilon			
O Transition k-kl-omega (3 eqn)	1.68			
O Transition SST (4 eqn)	Wall Prandtl Number			
O Reynolds Stress (7 eqn)	0.85			
Scale-Adaptive Simulation (SAS)				
Detached Eddy Simulation (DES)				
Carge Eddy Simulation (LES)				
k-epsilon Model				
🔾 Standard				
• RNG				
Realizable				
RNG Options	User-Defined Functions			
Differential Viscosity Model	Turbulent Viscosity			
Swirl Dominated Flow	none	-		
Near-Wall Treatment	Prandtl Numbers			
O Standard Wall Functions	Wall Prandtl Number			
 Scalable Wall Functions 	none	-		
O Non-Equilibrium Wall Functions				
O Enhanced Wall Treatment				
O Menter-Lechner				
O User-Defined Wall Functions				
Options				
✓ Viscous Heating				
Curvature Correction				
Production Kato-Launder				
Production Limiter				
ОКСа	Incel			

obr. 6.13 – Nastavení matematického modelu řešeného problému

Definování materiálu provedete příkazem **Materials ("Physics/Materials/Create/Edit Materials")**. Analogicky jako v případě vedení tepla v tyči z databáze programu **ANSYS Fluent** vyberte materiály: voda, vzduch, ocel, které nakopírujete. Jedná se o materiály typu **fluid** a **solid**, a definujte konstantní fyzikální vlastností pro všechny materiály. Výsledná podoba nabídky materiálu je patrná z obr. 6.14.

Task Page	Create/Edit Materials		×
Marka dala	Name	Material Type	Order Materials by
Materials	steel	solid	Name
Materials	Chemical Formula	Fluent Solid Materials	Chemical Formula
Fluid		steel	Eluent Database
water-liquid		Mixture	rident Database
air		none	User-Defined Database
steel	Properties		
aluminum	Density (kg/m3)	constant	▼ Edit
		8030	
	Cp (Specific Heat) (j/kg-k)	constant	▼ Edit
		502.48	
	Thermal Conductivity (w/m-k)	constant	▼ Edit
		16.27	
	Chan	ge/Create Delete Close Help	

obr. 6.14 – Požadované materiály pro matematický model

Definování proudící tekutiny do dané oblasti provedete příkazem **"Physics/Cell Zone Conditions"**. V tomto případě máme dvě oblasti (**interior water, interior air**). Do oblasti **interior water** definujte **water**, a do oblasti **interior air** definujte **air**, viz obr. 6.15.

Task Page	I Fluid	×
Cell Zone Conditions	Zone Name interior_water Material Name water-liquid	
Zone Filter Text interior_air interior_water	Frame Motion 3D Fan Zone Source Terms Mesh Motion Laminar Zone Fixed Values Parcius Zone	
	Reference Frame Mesh Motion Porous Zone 3D Fan Zone Embedded LES Reaction Source Terms Fixed Values Multip	hase
	Rotation-Axis Origin Rotation-Axis Direction	
	x (m) 0 x 10 x	
	Y (m) 0 Y (m)	
	Z (m) 0 V Z 1	
Task Page Cell Zone Conditions Zone Filter Text interior_air interior_water	Fluid Zone Name Interior_air Material Name J Frame Motion JD Fan Zone Fixed Values Porous Zone	×
	Reference Frame Mesh Motion Porous Zone 3D Fan Zone Embedded LES Reaction Source Terms Fixed Values Multip	hase
	Rotation-Axis Origin Rotation-Axis Direction	
	X (m) 0 × X 0 · · ·	
	Y(m)0 Y 7 (x)	
	X (m) 0 * X * Y Y (m) 0 * Y 0 * Z (m) 0 * Z 1 *	

obr. 6.15 – Definování proudících médii do daných oblastí

Okrajové podmínky definujte pomocí příkazu **"Physics/Boundary Conditions"**. Podmínky mohou být různého typu, a to podle charakteristiky fyzikálního modelu. Výčet podmínek je patrný z Tab. 6.4.

Okrajová podmínka	Typ okrajové podmínky
inlet water	VELOCITY INLET
inlet air	VELOCITY INLET
outlet water	PRESSURE OUTLET
outlet air	PRESSURE OUTLET
wall inner	WALL
wall outer	WALL
interior water	INTERIOR
interior air	INTERIOR

Tab. 6.4 – Typy jednotlivých okrajových podmínek

Parametry na jednotlivých okrajových podmínkách odpovídají zadání dle *Tab. 6.3*. Nastavení okrajových podmínek je zobrazeno na následujících obrázcích.

Zone Name								Zone Name		
inlet_water								inlet_water		
Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential	UDS	Momentum	Thermal	Radiation
Velocit	Velocity Specification Method Magnitude, Normal to Boundar				Boundary		•	Temperatur	e (k) 363.1	15
	Refere	nce Frame	Absolute				•			
	Velocity	Magnitude	(m/s) 0.3				•			
Supersonic	/Initial Gau	ge Pressure	(pascal) 0				•			
	Turbulence	e								
	Specification	on Method	Intensity an	d Hydraulio	Diameter		•			
	Turbuler	nt Intensity ((%) 1				•			
	Hydrauli	c Diameter ((m) 0.04				•			

obr. 6.16 – Parametry okrajové podmínky inlet water

Velocity	/ Inlet						×	Velocity l	nlet		
Zone Name	1							Zone Name			
inlet_air								inlet_air			
Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential	UDS	Momentum	Thermal	Radiation	Sp
Veloci	Velocity Specification Method Magnitude, Normal to Boundary						Temperatur	e (k) 300			
	Refere	nce Frame	Absolute				•				
	Velocity	Magnitude	(m/s) 3				•				
Supersonio	c/Initial Gaug	je Pressure	(pascal) 0				•				
	Turbulence	e									
	Specificatio	on Method	Intensity an	d Hydrauli	c Diameter		•				
	Turbuler	nt Intensity	(%) 1				-				
	Hydraulio	: Diameter	(m) 0.02				•				
		1	OK Can	cel Hel	p					1	ок

obr. 6.17 – Parametry okrajové podmínky inlet air

Pressure	Outlet						×	Pressure O	utlet		_	
Zone Name								Zone Name				
outlet_water	r							outlet_water				
Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential	UDS	Momentum	Thermal	Radiation	Species	DP
	Backflow Refe	erence Frame	Absolute	•			•	Backflow To	tal Tempera	ature (k) 363		
	Ga	uge Pressure	e (pascal)	0			•					
	Pressure Pro	ofile Multiplie	r 1				•					
Backflow Dir	rection Specific	ation Method	Normal	to Boundary	,		•					
Bac	kflow Pressure	Specification	Total Pr	essure			•					
Prevent	Reverse Flow											
Radial E	quilibrium Pres	sure Distribu	ition									
Average	e Pressure Spec	cification										
Target M	Mass Flow Rate											
Tu	urbulence											
	Specifica	ation Method	Intensity	and Hydrau	lic Diameter		•					
В	Backflow Turbu	lent Intensity	(%) 1				-					
В	lackflow Hydrau	ulic Diameter	(m) 0.04				•					
			K Can)							
		0	Cano	Help	ļ						OK Cano	el

obr. 6.18 – Parametry okrajové podmínky outlet water

Pressure Outlet	× Pressure Outlet
Zone Name	Zone Name
outlet_air	outlet_air
Momentum Thermal Radiation Species DPM Multiphase Potential	UDS Momentum Thermal Radiation Species
Backflow Reference Frame Absolute	Backflow Total Temperature (k) 300
Gauge Pressure (pascal)	
Pressure Profile Multiplier 1	•
Backflow Direction Specification Method Normal to Boundary	•
Backflow Pressure Specification Total Pressure	•
Prevent Reverse Flow	
Radial Equilibrium Pressure Distribution	
Average Pressure Specification	
Target Mass Flow Rate	
Turbulence	
Specification Method Intensity and Hydraulic Diameter	
Backflow Turbulent Intensity (%)	▼
Backflow Hydraulic Diameter (m)	-
OK Cancel Help	OK Cancel

obr. 6.19 – Parametry okrajové podmínky outlet air

Task Page	🖪 Wall									×
Boundary Conditions	Zone Name wall_inner	7000								
Zone Filter Text	interior wate	r								
inlet_air inlet_water	Shadow Face Zone wall_inner-shadow									
interior-interior_air interior-interior_water outlet_air	Momentum	Thermal	Radiation	Species	DPM	Multiphase	UDS	Wall Film	Potential	Structure
wall_inner wall_inner wall_outer	Thermal Con Heat Fl Tempe O Coupled Material Nar Steel	nditions ux rature d	▼ Edit	Wal Heat Gene	I Thickness	5 (m) 0.003 e (w/m3) 0 Shell	Conductio	n 1 Layer		Edit
				(OK Can	icel Help				

obr. 6.20 – Parametry okrajové podmínky wall inner

Task Page	P Wall	×							
	Zone Name								
Boundary Conditions	wall_inner-shadow								
	Adjacent Cell Zone								
Zone Filter Text	interior_air								
inlet_air inlet water	Shadow Face Zone wall_inner								
interior-interior_air	Momentum Thermal Radiation Species DPM Multiphase UDS Wa	Il Film Potential Structure							
wall_outer wall_inner wall_inner wall_outer	Thermal Conditions Heat Flux Wall Thickness (m) 0.003 Temperature Heat Generation Rate (w/m3) 0 Coupled Shell Conduction 1 Material Name Edit	Layer Edit							

obr. 6.21 – Parametry okrajové podmínky wall inner-shadow

F Wall	-				1 + 0 + 1			X
Zone Name wall_outer Adjacent Cell Zone interior_air								
Momentum Thermal	Radiation	Species	DPM	Multiphase	UDS	Wall Film	Potential	Structure
 Heat Flux Temperature Convection Radiation Mixed via System Coupl via Mapped Interf Material Name steel 	ing face Edit	Te Wal Heat Gene	emperatur II Thicknes eration Rat	e (k) 300 s (m) 0.003 e (w/m3) 0	l Conductio	on 1 Layer	r	▼ ▼ Edit
		(OK Car	ncel Help				

obr. 6.22 – Parametry okrajové podmínky wall outer

Následně se provede inicializace výpočtové oblasti (**"Solving-Initialization-Method(Standard/Options)**"), tzn. definování počátečních podmínek do celé oblasti. V prvním kroku definujte počáteční podmínky (nulové hodnoty, minimální teplota) na základě parametrů na okrajové podmínce **inlet_air**.

lution Initialization	?
Initialization Methods	
O Hybrid Initialization	
 Standard Initialization 	
Compute from	
inlet_air	
Reference Frame	
O Relative to Cell Zone	
Absolute	
Initial Values	
Gauge Pressure (pascal)	-
0	
X Velocity (m/s)	
0	
Y Velocity (m/s)	
0	
Z Velocity (m/s)	
3	
Turbulent Kinetic Energy (m2/s2)	
0.00135	
Turbulent Dissipation Rate (m2/s3)	
0.00555284	
Temperature (k)	

obr. 6.23 – Inicializace výpočtové oblasti ("Solution Initialization")

V druhém kroku definujte počáteční hodnotu teploty T=363K do celé oblasti proudění vody (interior_water) pomoci příkazu **Patch** ve stejném okně (obr. 6.24) a to z důvodu urychlení numerického výpočtu.

Reference Frame			
Relative to Cell Zone Absolute	Patch		X
Initial Values Gauge Pressure (pascal) 0 X Velocity (m/s) 0 Y Velocity (m/s) 0 Z Velocity (m/s) 3 Turbulent Kinetic Energy (m2/s2) 0.00135	Reference Frame Relative to Cell Zone Absolute Variable Pressure X Velocity Y Velocity Z Velocity Temperature Turbulent Kinetic Energy Turbulent Dissipation Rate Image: State Sta	Value (k) 363 Use Field Function Field Function	Zones to Patch Filter Text 🕞 🗐
Turbulent Dissipation Rate (m2/s3) 0.00555284 Temnerature (k) Initialize Reset Patch Reset DPM Sources Reset Statistics	Console Setting inlet_wate Setting inlet_air Setting wall_outer	Patch Close F r (mixture) Done. (mixture) Done. (mixture) Done.	ielp

obr. 6.24 - Inicializace oblasti proudění vody příkazem Patch

Následně spustíme numerický výpočet příkazem **"Run Calculation"**. První kontrolou výpočtu je sledování reziduálů (relativních chyb). Po dosažení hodnot reziduálů pod

hranici 0.001 pro všechny proměnné a 0.000001 pro teplotu je zaručeno, že výpočet numericky zkonvergoval. Nakolik jsou výsledky reálné, tj. zda není výsledek deformovaný náhodnými chybami ve výběru materiálů nebo okrajových podmínek, je otázkou vyhodnocení všech počítaných veličin. Průběh reziduálů je znázorněn na obr. 6.25 – Průběh reziduálů.

obr. 6.25 – Průběh reziduálů

Pro vyhodnocení je potřeba vytvořit podélný řez oblastí pomocí příkazu **"Results/Surface/Create/Iso-Surface"**. V tomto řezu následně vyhodnocujte grafické výstupy. Nastavení vytvoření podélného řezu skrz oblast proudění vody je patrné z *obr. 6.26*. Obdobně vytvoříme i řez oblastí **interior-air** s tím rozdílem, že v položce **From Zones** vybereme **interior_air**.

Iso-Surface				×
New Surface Name rez-podelny-water Surface of Constar Mesh Y-Coordinate	e r nt May (m)	•	From Surface Filter Text rez-podelny rez-podelny-air rez-podelny-water wall_inner wall_inner-shadow	
-0.03995027 Iso-Values (m) 0	0.04		From Zones Filter Text	
		Create	ompute Close Help	

obr. 6.26 – Vytvoření podélného řezu v oblasti interior water

Výsledný řez je patrný z obr. 6.27.

obr. 6.27 – Podélný řez vedený středem výpočetní oblasti

Pro vyhodnocení vektorů rychlostí, které jsou definovány v každé buňce výpočetní oblasti pomocí příkazu "**Results/Graphics/Vectors/**" upravte hodnotu parametru "Scale". Definujte novou hodnotu parametru "Scale=0.5", viz obr. 6.28.

obr. 6.28 – Vektory rychlosti ($u[m.s^{-1}]$)

Průběh statického tlaku v podélném řezu v řešených oblastech (interior water, interior air) lze zobrazit pomocí vyplněných kontur "Results/Graphics/Contours", viz obr. 6.29.

obr. 6.29 – Kontury statického tlaku (Pa)

Průběh statického tlaku lze zobrazit i pomocí 2D grafu příkazem "**Results/Plots/XY Plot/Solution XY Plot"** v jednotlivých oblastech (**interior water**, **interior air**). Následné vykreslení průběhu tlaku příkazem "**Results/Plots/XY Plot/Solution XY Plot"** v jednotlivých oblastech je patrné z obr. 6.30. Výsledky lze skreslit do jednoho grafu.

obr. 6.30 – Průběh statického tlaku po délce v oblasti interior water a interior air

Další vyhodnocení představují kontury rychlostí v podélném řezu pomocí vyplněných kontur "**Results/Graphics/Contours**", viz obr. 6.31.

	Contour Name contour-1	×	ANSYS 2019 R
Contau-1 Velocity Magnitude 3.35e+00 2.08e+00 2.01e+00 2.01e+00 1.87e+00 1.87e+00 1.00e+00 0.00e+00 0.00e+00 [m6]	Options	Contours of Velocity Velocity Magnitude Min (m/s) Max (m/s) 0 3.345917 Surfaces Filter Text inlet_air inlet_air outlet_water outlet_water outlet_water outlet_water outlet_water indet_water inde	

obr. 6.31 - Kontury rychlosti [m/s]

Průběh efektivní viskozity pomocí vyplněných kontur "**Results/Graphics/Contours**" je na obr. 6.32.

	Contours	×	2019
	Contour Name		ACADEM
	contour-1		
\frown	Options	Contours of	
ontour-1	✓ Filled	Turbulence 👻	
ffective Viscosity	✓ Node Values	Effective Viscosity	
1.48e-02	Contour Lines	Min (kg/m-s) Max (kg/m-s)	
- 1.33e-02	Global Range	3.172898e-05 0.01481747	
1.19e-02	V Auto Range		
1.04e-02		Surfaces Filter Text 🔂 🔂	
* 8.90e-03	Draw Mesh	inlet air	
7.42e-03	Urdw Mean	inlet_water	
5.95e-03		outlet_air	
4.47e-03	Coloring	rez-podelny	
- 2.99e-03	Banded Groupth	rez-podelny-air	
• 1.51e-03	O Smooth	rez-podelny-water	
3.17e-05	Colorman Ontion	wall_inner	
(g/m-s]		New Surface "	
		Save/Display Compute Close Help	à
			Z

obr. 6.32 – *Efektivní viskozita* [kg.m⁻¹.s⁻¹]

Vyhodnocení teplotního pole pomocí vyplněných kontur "Results/Graphics/Contours" je na *obr. 6.33*.

	Contours Contour Name contour-1 Options	Contours of
tour-1 lio Temperature 3.83e+02 3.57e+02 3.51e+02 3.38e+02 3.38e+02 3.38e+02 3.39e+02 3.19e+02 3.19e+02 3.00e+02 3.00e+02	 Filled Node Values Contour Lines Global Range Auto Range Clip to Range Draw Profiles Draw Mesh Coloring Banded Smooth 	Temperature Static Temperature Win (k) Max (k) 300 363.15 Surfaces Filter Text Fo inlet_air inlet_water outlet_air outlet_air outlet_water outlet_water rez-podelny-air rez-podelny-water wall_inner Image: State St
		Save/Display Compute Close Help

obr. 6.33 – Teplotní pole [K]

Tok tepla přes stěnu rozhraní (wall inner, wall inner-shadow) lze vyhodnotit příkazem "Results/Plots/XY Plot/Solution XY Plot", viz obr. 6.35. Stěna rozhraní je rozdělená na dvě stěny (wall inner a wall inner-shadow), kdy jedná je rozhraním pro vodu a druhá je rozhraním pro vzduch. Jejich přesné označení souvisí s následným vyhodnocením součinitele přestupu tepla a Nusseltovým číslem. Zjistit přesné označení, která stěna je součástí dané oblasti proudění, je možné příkazem "Physics/Zones/Boundary Conditions". Následným editováním např. stěny wall inner je uvedeno, že stěna sousedí s okolní oblasti (Adjacent Cell Zone) – interior _water, tzn. s vodou, viz *obr. 6.34.* V případě stěny wall_inner-shadow bude tomu naopak (stěna sousedí s oblasti vzduch).

Task Page	🛛 🖸 Wali	<	
	Zone Name		
Boundary Conditions	wall_inner		
	Adjacent Cell Zone		
Zone Filter Text	interior_water		
inlet air	Shadow Face Zone		
inlet_water	wall_inner-shadow		
interior-interior_air	Momentum Thermal Radiation Species DPM Multiphase UDS Wall Film Potential Structure		
outlet_air	Wall Motion Motion		
outlet_water	Stationary Wall Relative to Adjacent Cell Zone		
wall_inner			
wall_inner-shadow			
nun_outer	Shear Condition		
	No Slip		
	O Specified Shear		
	Specularity Coefficient		
	O Marangoni Stress		
	Wall Roughness		
	Roughness Height (m)		
	Roughness Constant 0.5		
	OK Cancel Help	_	

obr. 6.34 – Identifikace stěny wall inner sousedící s okolní vodou

Vyhodnocení toku tepla (**Total Surface Heat Flux**) stěnou **wall inner a wall innershadow** pomocí příkazu "**Results/Plots/XY Plot/Solution XY Plot**" je na obr. 6.35.

obr. 6.35 – Tok tepla (W/m²) přes stěnu rozhraní (**wall inner, wall innershadow**)

Analogicky lze tok tepla na stěnách vyhodnotit pomocí vyplněných kontur "**Results/Graphics/Contours**" (*obr. 6.36*).

obr. 6.36 – Tok tepla (W/m²) přes stěnu rozhraní (wall inner)

	Reports	Contours	
	. ∯ Surface Integral	Options Contours of	RM Graphics
	∰ Volume Integral:	It Vall Fluxes	= Table
	∛≓ Heat Exchanger.	Node Values Total Surface Heat Flux	6 Information
×.		Global Range Min (w/m2) Max (w/m2)	
		✓ Auto Range 208.0936 1046.646	
	1.05e+03		
	1.00e+03	✓ Draw Mesh Surfaces Filter Text □ □ □ □	
	9.63e+02	outlet_water	
	9.21e+02	Coloring rez-podelny-air	
	8.79e+02	Banded rez-podelny-water wall import	
	8.37e+02	Smooth wall_inner-shadow	
	7.95e+02	Levels Setup wall_outer	
	7.53e+02		
	7.11e+02	New Surrace ,	
	6.69e+02	Display Compute Close Help	
	6.27e+02		
	5.85e+02		
	5.44e+02		
	5.02e+02		
	4.60e+02		
	4.18e+02		
	3.76e+02		
	3.34e+02		
	2.92e+02		
	2.50e+02		
	2.08e+02		

obr. 6.37 – Tok tepla (W/m²) přes stěnu rozhraní (wall inner-shadow)

Dále je vyhodnocení zaměřeno na **součinitele přestupu tepla** α **a Nusseltovo číslo Nu** do vody a vzduchu, přitom je nutné definovat referenční hodnoty.

Vyhodnocení pro vodu

Nejdříve definujte referenční hodnoty dle vstupu vody (inlet water) příkazem "Results/Reporst/Reference Values". V položce "Compute from" vyberte inlet water. V nabídce referenčních hodnot ("Reference Values") upřesněte referenční teplotu ("Temperature") a charakteristický rozměr ("Lenght") - (T_{ref} =363.15 K, d_h =0.04 m), viz obr. 6.38.

Referen	ce Values	(?)
Compute	from	
inlet_w	ater	-
Ref	erence Values	
	Area (m2)	1
	Density (kg/m3)	998.2
	Enthalpy (j/kg)	0
	Length (m)	0.04
	Pressure (pascal)	0
	Temperature (k)	363.15
	Velocity (m/s)	0.3
	Viscosity (kg/m-s)	0.001003
Rat	tio of Specific Heats	1.4
Reference	e Zone	
interior	_water	-

obr. 6.38 – Referenčních hodnoty pro vyhodnocení do vody pro stěnu wall inner

Vyhodnocení součinitele přestupu tepla α (**"Surface heat transfer coefficient**") ze strany vody do stěny rozhraní (**wall inner**) realizujeme příkazem **"Results/Plots/XY Plot/Solution XY Plot**", viz *obr. 6.39*.

obr. 6.39 – Součinitel přestupu tepla stěnou rozhraní (wall inner) [W.m⁻².K⁻¹]

Analogicky lze součinitele přestupu tepla na stěně vyhodnotit pomoci vyplněných kontur "**Results/Graphics/Contours**" (*obr. 6.40*).

obr. 6.40 – Součinitel přestupu tepla stěnou rozhraní (**wall inner**) [W.m⁻².K⁻¹] pomoci kontur

Následně lze vyhodnotit **Nusseltovo číslo** na stěně rozhraní (**wall inner**). Nejdříve prověřte referenční hodnoty příkazem **"Results/Reporst/Reference Values"** (**Temperature** - T_{ref} =363.15 K a **Lenght** - d_h =0.04 m. Pak vykreslete **Nusseltovo číslo** příkazem **"Results/Plots/XY Plot/Solution XY Plot"** (obr. 6.41).

obr. 6.41 – Nusseltovo číslo vyhodnoceného na stěně rozhraní (wall inner)

Nusseltovo číslo lze vyhodnotit pomocí vyplněných kontur "Results/Graphics/Contours" (obr. 6.42).

Contours		
Options	Contours of	
✓ Filled	Wall Fluxes 💌	
✓ Node Values	Surface Nusselt Number	
Global Range	Min Max	
✓ Auto Range	93.04454	
Draw Profiles		
✓ Draw Mesh	Surfaces Filter Text	
	outlet_water	
Coloring	rez-podelny	
Banded	rez-podelny-water	
○ Smooth	wall_inner	
Levels Setup	wall_outer	
20 1 1		
	New Surface 🚽	
	Display Compute Close Help	
		J
		/
11		

obr. 6.42 – Nusseltovo číslo vyhodnoceného na stěně rozhraní (wall inner)

Vyhodnocení pro vzduch

Dále vyhodnotíme součinitele přestupu tepla α (**"Surface heat transfer coefficient**") a Nusseltovo číslo Nu ze strany stěny (**wall inner-shadow**) do vzduchu příkazem **"Results/Plots/XY Plot/Solution XY Plot**". Nejdříve definujte referenční hodnoty dle vstupu vzduchu (**inlet air**) příkazem **"Results/Reporst/Reference Values**". V položce **"Compute from**" vyberte **inlet air**. V nabídce referenčních hodnot (**"Reference Values**") upřesněte referenční teplotu (**"Temperature**") a charakteristický rozměr (**"Length**") - (*T_{ref}*=300 K, *d_h*=0.02 m), viz *obr. 6.43*.

Referenc	e Values	(?)
Compute f	from	
inlet_air		•
	Reference Values	
	Area (m2)	1
	Density (kg/m3)	1.225
	Enthalpy (j/kg)	0
	Length (m)	0.02
	Pressure (pascal)	0
	Temperature (k)	300
	Velocity (m/s)	3
	Viscosity (kg/m-s)	1.7894e-05
	Ratio of Specific Heats	1.4
Reference	Zone	
interior_a	air	•

obr. 6.43 – Referenčních hodnoty pro stěnu wall inner-shadow

obr. 6.44 – Součinitel přestupu tepla do vzduchu pro rozhraní (**wall inner-shadow**) [W.m⁻².K⁻¹]

Vyhodnocení součinitele přestupu tepla pomocí vyplněných kontur "**Results/Graphics/Contours**" je na *obr. 6.45*.

obr. 6.45 – Součinitel přestupu tepla do vzduchu pro rozhraní (**wall inner-shadow**) [*W.m*⁻².*K*⁻¹]

Podobně vyhodnotíme **Nusseltovo číslo** na stěně rozhraní vzduch stěna (**wall inner-shadow**). Prověřte referenční hodnoty příkazem **"Results/Reporst/Reference Values"** (**Temperature** $-T_{ref}$ =300 K a **Lenght** $-d_h$ =0.02 m). Následně vykreslete **Nusseltovo číslo** příkazem **"Results/Plots/XY Plot/Solution XY Plot"**, viz obr. 6.46.

obr. 6.46 – Nusseltovo číslo vyhodnoceného na stěně rozhraní (**wall innershadow**)

Analogicky lze Nusseltovo číslo vyhodnotit pomocí vyplněných kontur "**Results/Graphics/Contours**" (obr. 6.47).

F		Contours	X	
		Options	Contours of	
-	1.39e+01	✓ Filled	Wall Fluxes	AN
	1.34e+01	Global Range	Surface Nusselt Number	20
	1.28e+01	✓ Auto Range Clip to Range	2.765078 13.90935	ACAD
	1.22e+01	Draw Profiles		
	1.17e+01	✓ Draw Mesh		
	1.11e+01	Coloring	rez-podelny	
	1.06e+01	Banded	rez-podeiny-air rez-podelny-water	
	1.00e+01	Smooth	wall_inner wall_inner-shadow	
	9.45e+00	Levels Setup	wall_outer	
	8.89e+00	20 - 1 -	New Surface 🖉	
	8.34e+00			
	7.78e+00		Display Compute Close Help	
	7.22e+00	<u></u>		
	6.67e+00			
	6.11e+00			
	5.55e+00			
	4.99e+00			
	4.44e+00			
	3.88e+00			ľ
	3.32e+00			
	2.77e+00			<

obr. 6.47 – Nusseltovo číslo vyhodnoceného na stěně rozhraní (wall inner-shadow)

Vyhodnocení průměrných hodnot

Průměrnou hodnotu **Nusseltova čísla** na stěně rozhraní (**wall inner**) pro oblast proudění vody (**water**) vyhodnotíte pomocí příkazu **"Results/Report/Surface Integral**". Nejdříve definujte referenční hodnoty dle obr. 6.38. V nabídce **"Report Type**" vyberte **"Area-Weighted Average**". Dále v nabídce **"Field Variable**" vyberte **"Wall Fluxes-Surface Nusselt Number**" a v položce **"Surface**" vyberte **"wall inner**" (obr. 6.48). Výslednou hodnotu zapište do *Tab. 6.5*.

Surface Integrals			
Report Type	Field Variable		
Area-Weighted Average	Wall Fluxes		
Custom Vectors	Surface Nusselt Number		
Custom Vectors Save Output Parameter	Surfaces Filter Text inlet_air inlet_water outlet_air outlet_water rez-podelny rez-podelny-air rez-podelny-water wall_inner wall_inner		
Highlight Surfaces Area-Weighted Average 82.17902			
Compute	write Close [Help]		

obr. 6.48 – Vyhodnocení průměrné hodnoty **Nusseltova čísla** na stěně rozhraní (**wall inner**) pro oblast proudění vody (**water**)

Obdobným způsobem postupujte v případě vyhodnocení průměrné hodnoty **Nusseltova čísla** na stěně rozhraní (**wall inner-shadow**) pro oblast proudění vzduchu (**air**), viz obr. 6.49. Referenční hodnoty definujte dle *obr. 6.43*.

Field Valiable
 Wall Fluxes
Surface Heat Transfer Coef.
Surfaces Filter Text inlet_air inlet_water outlet_air outlet_water rez-podelny-air rez-podelny-water wall_inner wall_inner-shadow wall_outer
Highlight Surfaces Area-Weighted Average (w/m2-k) 14.58478

obr. 6.49 – Vyhodnocení průměrné hodnoty **Nusseltova čísla** na stěně rozhraní (**wall inner-shadow**) pro oblast proudění vzduchu (**air**)

Stejným způsobem vyhodnoťte průměrnou hodnotu součinitel přestupu tepla α (**"Surface heat transfer coefficient"**) na stěně rozhraní (**wall inner**) pro oblast proudění vody (**water**) příkazem **"Postprocessing/Report/Surface Integral"** (obr. 6.50).

Field Variable
▼ Wall Fluxes ▼
Surface Heat Transfer Coef.
Surfaces Filter Text = = = = = = = = = = = = = = = = = = =
inlet_water outlet_air outlet_water rez-podelny rez-podelny-air rez-podelny-water wall_inner wall_inner wall_outer
 Highlight Surfaces Area-Weighted Average (w/m2-k) 1232.685

obr. 6.50 – Vyhodnocení průměrné hodnoty **součinitele přestupu tepla** α na stěně rozhraní (**wall inner**) pro oblast proudění vody (**water**)

Obdobným způsobem postupujte v případě vyhodnocení průměrné hodnoty součinitele přestupu tepla α na stěně rozhraní (**wall inner-shadow**) pro oblast proudění vzduchu (**air**), viz obr. 6.51. Referenční hodnoty definujte dle *obr. 6.43*.

Report Type	Field Variable
Area-Weighted Average	Wall Fluxes
Custom Vectors Vectors of	Surface Heat Transfer Coef.
Custom Vectors	Surfaces Filter Text To Text Text Text Text Text Text Text Text
	Highlight Surfaces Area-Weighted Average (w/m2-k) 14.58478

obr. 6.51 – Vyhodnocení průměrné hodnoty **součinitele přestupu tepla** α na stěně rozhraní (**wall inner-shadow**) pro oblast proudění vzduchu (**air**)

Tepelný výkon *P* vyhodnotíte příkazem "Results/Report/Fluxes" v Options zvolte Total Heat Transfer Rate" a v nabídce Boundaries označte wall inner a wall innershadow, viz obr. 6.52.

Flux Reports		X		
Options				
Mass Flow Rate Total Heat Transfer Rate Radiation Heat Transfer Rate	Boundaries Filter Text To	Results -85.77470398241923 85.77470398241942		
	wall_outer	4 •		
Save Output Parameter		Net Results (w)		
		1.98952e-13		
Compute Write Close Help				

obr. 6.52 – Vyhodnocení tepelného toku P [W]

Ztrátový součinitel ζ určete na základě příslušných tlaků definovaných v rovnici uvedené níže.

$$\zeta = \frac{p_{1tot} - p_{2tot}}{p_{2dyn}} \tag{6.9}$$

Vyhodnocení tlaků proveďte pomocí příkazu **"Results/Report/Surface Integrals**" vždy na vstupu (**inlet**) a výstupu (**outlet**) proudící vody (**water**) a vzduchu (**air**). Ukázka vyhodnocení p_{1tot} totálního tlaku na vstupu pro vzduch (**inlet air**) je představena na obr. 6.53. Následně hodnotu zapište do

Tab. 6.5. Identicky postupujte u vyhodnocení zbylých hodnot tlaků (**p**_{2tot}, **p**_{2dyn}).

Surface Integrals	×					
Report Type	Field Variable					
Area-Weighted Average	Pressure					
Custom Vectors Vectors of	Total Pressure 💌					
· · · · · · · · · · · · · · · · · · ·	Surfaces Filter Text 🗾 🗐 🛒 🔫					
Custom Vectors	inlet_air					
Save Output Parameter	inlet_water outlet_air outlet_water rez-podelny rez-podelny-air rez-podelny-water wall_inner wall_inner-shadow wall_outer					
	Highlight Surfaces					
	Area-Weighted Average (pascal)					
7.531768						
Compute	Write Close Help					

obr. 6.53 – Vyhodnocení **p**1tot na vstupu pro vzduch (**inlet air**)

Výpočet ztrátového součinitele ζ pro oblast proudění vzduchu:

$$\zeta = \frac{p_{1tot} - p_{2tot}}{p_{2dyn}} = \frac{9,16 - 5,8}{5,78} = 0,58 \tag{6.10}$$

Výpočet ztrátového součinitele ζ pro oblast proudění vody:

$$\zeta = \frac{p_{1tot} - p_{2tot}}{p_{2dyn}} = \frac{71,48 - 47,08}{47,003} = 0,52$$
(6.11)

	Odhad pro vzduch	Odhad pro vodu	CFD řešení vzduch	CFD řešení voda	Jednotky
u	3	0.3	3	0.3	[m.s ⁻¹]
Re	4108	11943	4108	11943	[1]
Nu	15,9	91,62	12.05	82,18	[1]
α	19,2	1374,3	14.58	1232,7	[W.m ⁻² .K ⁻¹]
Р			85,77	85,77	[W]
p 1tot			7,53	61,85	[Pa]
p 2tot			5,59	45,73	[Pa]
p 2dyn			5,59	45,67	[Pa]
5			0,35	0,35	[1]

u rychlost

Re Reynoldsovo číslo

- Nu Nusseltovo číslo
- *α* Součinitel přestupu tepla
- P Tepelný výkon
- **p**1tot totální tlak (total pressure) na vstupu (inlet)
- **p**_{2tot} totální tlak (total pressure) na výstupu (outlet)

*p*_{2dyn} dynamický tlak (dynamic pressure) na výstupu (outlet)

 ζ ztrátový součinitel

Závěr

Odchylky v řešení jsou způsobené jak ze strany odhadu **Nusseltova čísla** analyticky, tak ze strany numerického řešení, kde je možno testovat vliv kvality sítě, modelů a fyzikálních vlastností. Zejména analytické vztahy odhadu **Nusseltova čísla** ne zcela odpovídají charakteristice dané úlohy souproudého výměníku. Mají za účel poskytnout základní informaci o odhadu **Nusseltova čísla**. Hodnoty **Nusseltova čísla** získané z analytických vztahů a numerického výpočtu se shodují v řádu, což lze hodnotit jako uspokojivé.

Přesnost numerického výpočtu závisí na kvalitě výpočetní sítě, která může být dodatečně zhušťována. Je několik možných variant adaptace, např. lze v meshingu připravit jemnější síť a porovnat výsledky.

7 ŠÍŘENÍ TEPLA KONDUKCÍ A KONVEKCÍ V OVZDUŠÍ

Vytvořte matematický model teoreticky analogický souproudému výměníku s tím rozdílem, že místo vnější trubky bude definováno okolí vzduchu. Proveďte trojrozměrnou (3D) numerickou simulaci. Tekutiny jsou v kombinaci voda-vzduch. Model je patrný z obr. 6.1. Definujte jednotlivé oblasti a parametry dle zadaných okrajových podmínek a výsledky graficky zhodnoťte.

obr. 7.1 – Geometrie a okrajové podmínky.

Tab.	7.1 –	Rozměry	oblasti
------	-------	---------	---------

Délka trubky H1	0.5	m
Průměr trubky D1	0.04	m
Kvádr pomocí dvou bodů	(0.0 -0.1 -0.1)	m
na diagonále	(0.5 0.5 0.1)	

Trubkou proudí uprostřed kapalina – voda (**water**), stěna je tvořena ocelovou trubkou o daném průměru. Dále uvažujte s tloušťkou stěny (**wall water**) 003m. Materiál stěny uvažujte ocel.

Okolí je vzduch (**air**) ohraničený atmosférickým tlakem, tedy podmínkou pressure outlet. Dolní stěna (outlet bottom) je izolovaná stěna.
Materiál	Ocel	Voda	Vzduch	
hustota p	8030	998.2	1.225	[kg.m ⁻³]
měrná tepelná kapacita c_{ρ}	502.48	4182	1006.43	[J.kg ⁻¹ K ⁻¹]
tepelná vodivost λ	16.27	0.6	0.0242	[W.m ⁻¹ K ⁻¹]
viskozita η		0.001003	0.000017894	[kg.m ⁻¹ s ⁻¹]

Tab. 7.2 – Fyzikální vlastnosti materiálu (ocel, voda, vzduch) při 300 K

Tab. 7.3 – Okrajové podmínky

	Inlet	Outlet	Wall	Outlet	Wall	
	water	water	water	air	bottom	
teplota T	363.15		coupled		q=0	[K]
rychlost u	0.3					[m.s ⁻¹]
tlak p		0		0		[Pa]
intenzita turbulence <i>I</i>	1	1		1		[%]
hydraulický průměr <i>d</i> _h	0.04	0.04		0.5		[m]

7.1 Matematický model a teoreticko-empirický odhad úlohy

V této úloze dochází k turbulentnímu proudění, je tedy použit matematický model RNG *k*- ε . Kritériem turbulence je tzv. Reynoldsovo číslo. Vzduch tměř neproudí, např. rychlost je 0.001 m/s.

Re pro proudění vody:

$$Re_{voda} = \frac{v \cdot d_h}{v} = \frac{0.3 \cdot 0.04}{1.01e - 06} = 12000$$
(7.1)

Výpočet Nusseltova čísla a součinitele přestupu tepla vychází z empirických vztahů, které jsou detailně popsány v literatuře [2]. V následujícím kroku, je proveden pouze analytický výpočet, který bude porovnán s numerickým výpočtem. Ze zadaných parametrů lze spočítat výše uvedené parametry proudění a přestupu tepla (Reynoldsovo číslo je počítáno z maximální rychlosti). Odhad Nusseltova čísla je problematický a je opravdu jen orientační. Na tento odhad navazuje výpočet součinitele prostupu tepla stěnou určeného z Nusseltova čísla vztahem $\alpha = \frac{Nu.\lambda}{d}$ [2].

Výpočet Nusseltova čísla pro oblast proudění vody v trubce:

$$\Pr = \frac{\rho \cdot c_p \cdot v}{\lambda} = \frac{998.2 \cdot 4182 \cdot 1.01e - 6}{0.6} = 6.99$$

$$Nu = 0.023 \cdot Re^{0.8} \cdot Pr^{0.3}$$

$$Nu = 0.023 \cdot 12000^{0.8} \cdot 6.99^{0.3} = 75.5$$
(7.2)

Pak součinitel přestupu tepla je

$$\alpha = \frac{Nu}{d_h} \cdot \lambda = \frac{75.5}{0.04} \cdot 0.6 = 1132.6 \ W. \ m^{-2}. \ K^{-1}$$
(7.4)

7.2 Tvorba geometrie a sítě.

Geometrie je dána dvěma entitami, tj. válcem a kvádrem, použitím Boolovského odečítání se vytvoří oblast vody a oblast vzduchu. Metodika tvorby sítě je shodná s metodikou popsanou v kap. 6, tj. metoda inflation a sweep na trubku a metoda inflation pro objem vzduchu. Síť má následující tvar.

obr. 7.2 – Povrchová síť a detail s inflation.

7.3 Výpočet problému s gravitací.

Úpravy při řešení šíření tepla v okolí budou ve Fluentu provedeny následovně:

Teplo šířící se prouděním vzduchu do okolí je významně ovlivňováno gravitací. Zadává se např. v menu "Physics/Operating Conditions/Gravity" a hustota se upřesní v "Physics/Operating Conditions/Operating Density", jejíž hodnota je 0. Pak lze pozorovat stratifikaci tlaku ve výsledku.

е	Domain	hysics	User-Defined	5	Solution	Results	
	Solver	💽 Opera	ating Conditions				;
90	Operating Condition	s Pressure	2		Gravity		
ok Neral	🛃 Reference Values	Operatin 101325	g Pressure (pascal)	*	Gravity	Acceleration	
ne View		Kererer X (m)	ice Pressure Locati	ion	X (m/s2) 0		•
				Ť	Y (m/s2) -9.81		•
er Text		Y (m) 0		•	Z (m/s2) 0	(3 -
Stup Image: Constraint of the second seco	eral lels Zone Conditions ndary Conditions nlet nternal Dutlet Wall amic Mesh erence Values erence Frames ned Expressions	Z (m) 0	ок	Ca	Boussinesq Pa Operating Tem 288.16 Variable-Dens Variable-Dens Specified Operating Dens 0 Help	vity Parameters Operating Dens sity (kg/m3)	rs sity

Fyzikální vlastnosti vzduchu budou závislé na teplotě případně na tlaku, tedy hustota je dána stavovou rovnicí a další fyzikální vlastnosti tzv. kinetickou teorií.

Materials						
Materials		-Q+				
Fluid water-liquid	1	Q				
air Solid steel	Create/Edit Materials					
aluminum	Name	Material Type				
	air	fluid				
	Chemical Formula	Fluent Fluid Materials				
		air				
		Mixture				
		none				
	Properties					
	Density (kg/m3)	ideal-gas				
	Cp (Specific Heat) (j/kg-k)	kinetic-theory				
	Thermal Conductivity (w/m-k)	kinetic-theory				
	Viscosity (kg/m-s)	kinetic-theory				
Create/Edit	Chang	e/Create Delete Close Help				

Příliš "volná" okrajová podmínka atmosférického tlaku způsobuje výrazné zpětné proudění a pak divergenci. Proto je výhodné použít rychlostní podmínku s velmi malou hodnotou, např. 0.001 m/s.

Boundary Conditions						
Zone Filter Text						
inlet_water interior-air interior-water outlet_air outlet_water wall bottom	Velocity Inlet Zone Name outlet_air					
wall_bottom wall_water wall_water-shadow	Momentum Thermal Radiation Species DPM Multiphas					
waii_water shadow	Velocity Specification Method Components					
	Reference Frame Absolute					
	Supersonic/Initial Gauge Pressure (pascal)					
	Coordinate System Cartesian (X, Y, Z)					
	X-Velocity (m/s) 0.01					
	Y-Velocity (m/s)					
	Z-Velocity (m/s)					
	Turbulence					
Phase Type	Specification Method Intensity and Viscosity Ratio					
mixture 🔻 velocity-inlet	Turbulent Intensity (%) 1					
Edit Copy	Turbulent Viscosity Ratio					
Display Mesh	OK Cancel Help					

Při zadání gravitačního zrychlení se generuje automaticky hydrostatický tlak v oblasti vzduchu i trubky. Proto tlaková podmínka na výstupu vody z trubky bude nahrazena hydrostatickým tlakem.

Boundary Conditions	
Zone Filter Text	Pressure Outlet
inlet water	Zone Name
interior-air	outlet_water
interior-water outlet_air	Momentum Thermal Radiation Species DPM Multipha
outlet_water	Packflow Poference Frame Abcolute
wall_bottom	
wall_water	Gauge Pressure -g*Position.y*Density
wall_water-shadow	Pressure Profile Multiplier
	Backflow Direction Specification Method Normal to Boundary
	Backflow Pressure Specification Total Pressure
	Prevent Reverse Flow
	Radial Equilibrium Pressure Distribution
	Average Pressure Specification
	Target Mass Flow Rate
	Turbulence
Phase Type	Specification Method Intensity and Viscosity Ratio
mixture 🔻 pressure-ou	Backflow Turbulent Intensity (%) 1
Edit Copy	Backflow Turbulent Viscosity Ratio 0.02
Parameters	
Display Mesh	OK Cancel Help

Pak úloha dobře konvergovat a výsledky budou reálné.

7.4 Výsledky

Inicializace je realizována především reálnými hodnotami teploty (300 K). Pro oblast vody se použije PATCH s teplotou 363 K. Na dalších obázcích jsou uvedeny příklady vyhodnocení.

obr. 7.3 – Kontury hydrostatického tlaku na hranici vzduchu a trubce a tlakový spád v trubce (PLOT XY).

obr. 7.4 – Rozložení teploty v osovém řezu oblastí s ohřevem vzduchu nad trubkou.