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List of labels 

Note: label, for which there is not defined dimensions, represents a general variable. 

 

a   temperature conductivity      m2s-1 

a


  general vector 

S ,A   area         m2 

A, Ai  constant        1 

DC   constant        1 

C   empirical constant       1 

C   constant        1 

CCC ,, 21  constant        1 

vc   specific heat capacity at constant volume    Jkg-1K-1 

pc   specific heat capacity at constant pressure    Jkg-1K-1 

hd   hydraulic diameter       m 

f   frekvence        s-1 

f   constant        1 



F   force         N 

E   specific energy       Jkg-1 

E   empirical constant       1  

Gr   Grashof number       1 

g   acceleration of gravity      ms-2 

h   static entalpy        Jkg-1  

h   height         m  

I   turbulent intensity       % 

k   turbulent kinetic energy      m2s-2 

Pk   turbulent kinetic energy in logarithmic layer    m2s2 

k   heat transfer coefficient      Wm-2K-1 

L , l  length         m 

m   mass         kg 

Ma   Mach number        1 

M   molecular weight       kgkmol-1 
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n


  vector of outer normal direction      1 

Nu   Nusselt number       1 

p   pressure        Pa 

opp   operating pressure       Pa 

sp   static pressure       Pa 

21,PP   thermal efficiency       1 

Pr   molecular Prandtl number       1 

h ,Pr t   turbulent Prandtl number      1 

q   heat flux        Jm -2s-1 

Q   heat          kcal, J 

VQ   volume flow rate        m3s-1 

mQ   mass flow rate        kgs-1 

r    specific gas constant       Jkg-1K-1 

R    univerzal gas constant      Jkmol-1K-1 

R   temperature resistance       1 

R   rezidual 

R   normalized rezidual       1 

Re   Reynolds number       1 

Sc   Schmidt number       1  

Sh   Strouhal number       1  

t   time         s 

t   temperature        oC 

T   absolut temperature       K 



u   vector of velocity       ms-1 

u   mean velocity        ms-1 

iu   i-th velocity component      ms-1 

iu   i-th mean velocity component     ms-1 

iu    i- th fluctuating velocity component     ms-1 

* ,uu    velocity defined by wall function     ms-1 

u   shear velocity        ms-1 

U   inner energy        Jkg-1 
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v   mean velocity        ms-1 



v   vector of velocity       ms-1 

V   volume         m3 

ix   coordinate in Cartesian system x1, x2, x3 or x, y, z   m 

y   perpendicular distance from the wall     m 

* , yy 
 dimensionless distance of the first cell from the wall  1 

*
 vy   dimensionless thickness of the sublayer    1 

vy   thickness of the viscous sublayer     m 

Py   distance of point P from the wall in normal direction  m 

   relaxing factor        1 

   heat transfer coefficient      Wm-2 



   estimation of heat transfer coefficient    Wm-2 

   coefficient of thermal expansion     K-1 



   Kronecker delta-tenzor      1 

   efficiency        1 

   rate of dissipation       m2s-3 

P   dissipation rate in the logarithmic layer    m2s-3 

   transfer 

   coefficient        1 

   von Kármán constant, poměr měrných tepelných kapacit 1 

    ratio of specific heat capacities     Wm-1K-1 

   dynamic viscosity       Pas 

   dynamic viscosity       Pas 

t   turbulent viscosity       Pas 

   kinematic viscosity       m2s-1 

t   turbulent kinematic viscosity      m2s-1 



   total stress tensor       Pa 

   density         kgm-3 

k   empirical constant       1 

   empirical constant       1 
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h   turbulent Prandtl number      1 

    time period        s 



   viscous stress tensor       Pa 

   stress          Pa 

w   viscous stress on the wall      Pa 

t   turbulent stress       Pa 

   general variable 

    fluctuations in general variable 



   mean value of general variable 

 

Indexes: 

i   index of the velocity component       

i   summation index         

C  Einstein summation index       

pew  , ,  index of wall of the final volume      

NBBFSNPEW  , , , , , , ,  

ref   index of reference values     

wall   index of the wall 

c  (cool) cold, heated 

h  (heat) warm, cooled 

o  mass     

i,n  index of iteration  

I  input 

O  output 

P  index of cell 

P  planar    

s  inertial     

S  wall  

stat  static        

tot  total 

L  index of raw 

T  index of column       
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1.  The hypothesis of the continuum and the physical 
properties of materials  

Fundamentals of thermomechanics is to investigate the heat transfer between a given 

system with its surroundings. This interaction is called the work and heat. However 

thermomechanics must deal with the process, during which the heat transfer takes place 

depending on changing conditions and time. Thus, we will consider not only the heat transfer 

and its resulting effect, but also the transmission rate.  

What is heat transfer? Heat transfer is a change in thermal energy due to the 

existence of temperature difference. However, the temperature difference exists within a 

single medium (media) or between multiple media. We discuss three types of heat transfer 

[2]: 

• conduction that occurs in the solid or stationary fluid with a temperature gradient (gradient) 

• convection, defined between the solid surface and the flowing fluid, if they have different 

temperatures 

• radiation arising between the surfaces which emit energy in the form of electromagnetic 

waves, 

 

 

T1 

T1≥T2 

T2 

  

q 
Ts 

u∞,T∞ 

T∞≥T

s 

  

T1 

T2 

q1 

q2 

 

conduction convection radiation 

Fig.  1.1 Conduction, convection a radiation [2]  

 

In a complex context, it is necessary to consider not only the heat transfer, but also mass 

and momentum transfer, that deal with the flow of gases and liquids (fluids). 

1.1. The hypothesis of the continuum 

Each substance consists of molecules that exist in the environment, they may also 

move. But this environment is not considered as a discrete environment at the molecular 

level. Thus, it has a molecular structure, but it is not always optimal to include this molecular 

structure of the model. The intentional release of the molecular structure is known as a 
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hypothesis of continuum, when the molecular structure of fluid is replaced by a set of 

properties such as density, pressure, temperature and velocity [4], defined in fluid points 

(very small volume) and varies continuously in the transition from one to another volume. 

These properties are therefore described by continuous functions of position and time. It has 

been proven that this approach can replace the problem at a molecular level in a certain sense. 

Similarly, as in the general mechanics the concept of a mass point is introduced, the 

concept of "elementary volume of fluid and solid" performs in the tasks of transfer. It is a 

volume very small compared to the dimensions of the liquid stream but sufficiently large with 

respect to the mean length of the free path of the molecule. It can be assumed, therefore, 

that the statistical mean values of the kinetic theory apply to the number of molecules 

contained in this volume.  

   

Fig.  1.2 Elementary volume of fluid [11]  

 

For this "elementary volume" the equilibrium conditions of forces and energy will be 

derived and the basic laws will be defined, i.e. the law of mass and energy conservation.  

1.2. Methods for solving of heat, mass and momentum transfer  

Basic laws of mass, momentum and energy conservation are described by partial 

differential equations together with the boundary and initial conditions. Their analytical 

solution is very difficult and is only possible for several significantly simplified applications. 

Therefore, numerical methods are currently used on a large scale.  

 Numerical modeling of many physical phenomena is closely linked to modeling a form 

of motion mathematically. Movement of fluids is associated with the solution of various 

problems of the physical model: 

 laminar and turbulent flow in both simple and complex geometries 

 compressible and incompressible flow 

 steady, unsteady and transient flow 
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 heat transfer, natural and mixed convection, radiation 

 transfer of chemical admixtures, including chemical reactions 

 multiphase flow, free surface flow, flow with solid particles, bubbles, respectively. drops 

 combustion and chemical reactions 

 porous flow, etc. 

Because phenomena are generally three-dimensional and time-dependent, they are 

described by a set of partial differential equations that must be solved by numerical methods.  

The flow solution is possible to use commercial software systems CFD (Computational Fluid 

Dynamics) program systems, such as Ansys-Fluent, Ansys-CFX, Fidap, Flow 3D, Rampant, 

Fluidyn-Panache, and others. The task of the user is to build the correct calculation model, 

which contains some mathematical, physical and technical principles. For such a model it is 

necessary to find all input data in the existing standards, to build the input data for a program 

that can solve computational model, solving by the terminal, correctly interpret the results for 

further use in all phases and carry out effective monitoring of all inputs and outputs. The user 

must safely divide all the information on the geometric data (two-dimensional or three-

dimensional features, topology), data on the effect of external forces and physical data 

(information about flowing media, its physical properties). Thus, an essential task is to know 

hydromechanics, thermodynamics and other sciences to the complexity of the problem. 

As regards the computational methods underlying the use of the program, the 

designer should know the methods principle for reliable use in standard cases. For program 

ANSYS Fluent or CFX it is a need to know in what shape the final volume will work, it follows 

the choice of network density, approximation schemes, the nature of the time dependence of 

the quantities and the resulting time step size, etc. 

1.3. Properties of solids and liquids 

State of substances found in equilibrium can be determined by density, 

temperature, pressure and velocity. 

Density   is equal to the ratio of mass of elemental particles of a substance dm to 

its elementary volume dV 

V

m

d

d
            [kgm-3] (1.3.1) 

Teperature T  is a variable that gives information about internal energy of the 

substance. It is expressed in degrees of Celsius or Kelvin. 

    15273.CK o  tT            (1.3.2) 
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The temperature change of substances is often associated with convection or conduction of 

heat.   

The density of solids and liquids varies with pressure and temperature only slightly and most 

of the calculations will be considered as constant .konst  Yet the liquids have the ability 

to reduce their fluid volume at increasing pressure and therefore their bulk compressibility 

can be defined. Thermal expansion [11] is the ability of a substance increasing its volume 

when heated. It is expressed as a coefficient of thermal expansion  

             
konstpt

V

V 















1
     [oC-1]  (1.3.3) 

 

 

Fig. 1.3 Thermal expansion of 

liquids 

Let at the beginning the liquid of density  and the volume 

V is placed in the container, see Fig. 1.3. After heating the 

liquid, its temperature is higher by t and the liquid 

occupies a volume VVV 0 . The volume, temperature 

and density of the liquid after heating are 000 ,, tV . 

Substituting the volume and temperature difference after 

heating and before heating in equation (1.3.4) it gives 

equation (1.3.4), which expresses the change of liqiud 

volume VVV  0  per unit of original volume when the 

temperature change is  ttt  0 . 

 

tV

V

tt

VV

V 









0

01
  [oC-1] (1.3.4) 

The previous equation shows the relationship of the volume of liquid when heated  

 tVtVVVVV   10   [m3]  (1.3.5) 

 The density after heating is given by the following equation 

   ttV

m

V

m

Δ1Δ10

0











     [kgm-3] (1.3.6) 

The liquid pressure is determined by the amplitude of the pressure force acting 

perpendicularly to the unit area. When a pressure force is uniformly distributed, the pressure 

is given by the ratio of the amplitude force and the area.  

S

F

p



 resp. 
S

F

p
d

d


 [Pa] 
(1.3.7) 
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Fig.  1.4 Effect of pressure forces 

on the wall of the container 

Pressure force in hydrostatics always acts 

perpendicular to the surface. This statement can be 

proved by negation, see Fig.  1.4. If the force 


Fd  was 

applied to area Sd  in non-normal direction, it could 

be broken down into normal and tangential 

component. The tangential component of the force 

would require the movement of liquid particles, that do 

not resist to relative movement. Because the fluid is at 

rest, the tangential component is zero and the 

pressure force must act in the direction normal to the 

surface. 

The density of gases and vapors is a function of state variables, i.e. pressure p and 

temperature T [K]. For its calculation there will be use a simple equation of state of ideal 

gas 

mrTpV rT
p



      (1.3.8) 

where r is the specific gas constant [Jkg-1K-1], whose valuedepends on the type of gas.  

The viscosity of fluid is reflected by the movement of real fluids. If the adjacent 

layers of fluid move at different velocity, their interface shear stress arises and it prevents 

movement. Slower layer is accelerated and in turn faster layer being held back. Tangential 

(shear) stress is caused by internal friction or viscosity of the fluid. It is proportional to the 

change in velocity in the direction perpendicular to the direction of motion according to 

Newton's relationship  

y

v

d

d
          [Pa] (1.3.9) 

where   is dynamic viscosity and 
y

v

d

d
 is gradient of velocity in the direction perpendicular to 

the moving direction, see Fig.  1.5. This formula was formulated in 1687 by English physicist 

Isaac Newton for laminar flow. Shear stress causes angular deformation of the elementary 

volume of fluid (Fig.  1.5).  
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Fig.  1.5 Shear stress under laminar flow [11]  

 

 

The unit of dynamic viscosity   is defined by the equation for shear stress  

sPa
sm

kg

m

sN

][

][][
][

2








v

y
  

Kinematic viscosity is calculated by dividing the dynamic viscosity and density according to 

the relation 




            

12
3

sm
kg

m

sm

kg
][ 


  (1.3.10) 

The dimension of kinematic viscosity does not contain units of weight and force. In practice, 

the still important unit of kinematic viscosity in the technical system is Stokes for which 

applies 1S = cm2s-1 = 10-4 m2s-1. 

Heat Q [J] (incorrectly used term the thermal energy) [12] , [2]  is part of the inner 

energy which system exchanges (i.e. to accept or surrender) in contact with another system, 

without causing to produce work. The heat exchange between systems per unit time defines 

the thermal power P [Js-1=W]. The heat passing through a surface determines so called heat 

flux. The density of heat flux (specific heat flux) is the amount of heat that passes through 

the surface per unit time. 

 

The basic law of heat distribution is known 

Fourier's law, which gives the relationship between 

density of heat flux q  and temperature gradient 

Tgrad : 

T
S

P

tS

Q
q 



d

d

dd

d
  

                 [Js-1m-2=Wm-2] 

( 1.3.11 ) 

where    [Wm-1K-1]  is thermal conductivity, which 

1sT  
 

x  

2sT  
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Fig.  1.6  The principle of heat 

 conduction 

depends on type of material and temperature. The 

negative sign on the right side of the equation 

expresses the fact that the density of heat flux and 

temperature gradient as vectors have opposite sense 

(heat propagates in the direction of decreasing 

temperature). 

The specific heat (heat capacity) is then defined as the amount of heat required to increase 

the temperature by C1 0
 of substance amount 1 kg. 

Tm

Q
c

d

d
                      [Jkg-1K-1] (1.3.12 ) 

In heat transfer by conduction the temperature conductivity is defined by equation  





pc
a                           [m-2s-1] (1.3.13 ) 

Heat transfer coefficient is defined by the equation  

refwall TT

q


            [Wm-2K-1] (1.3.14 ) 

where  q  je  covective heat flux, wallT  is wall temperature and refT  is reference temperature, 

which should be representative of the problem.  

 

The heat transfer through the planar wall in fluid flow 

 

Fig.  1.7 Heat transfer through the wall 

      The simplest case of heat transfer is 

stationary heat transfer through a homogeneous 

isotropic unlimited planar wall [3]. The condition 

is, that the fluid surrounding wall on both sides, 

does not move significantly and thus avoid the 

convective heat transfer. To calculate the heat 

flux density in this case, the fundamental 

relationship holds: 

   1212

21

11

1
TTkTT

s
q 







 

( 1.3.15) 

 

where 1  and 2  represent heat transfer coefficient at the interface of boundary walls and 

fluid, 1T  and 2T  represent the temperature of both the fluid surrounding the walls and s  is the 

wall thickness.  This method can not be used for composite walls. The heat transfer 

 

 

s 

2sT  

11,Tα

22,Tα


1sT
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coefficient k [Wm-2K-1] characterizes the heat transfer from one working fluid into the 

second one via solid obstacle. In the heat transfer coefficient there is included thermal 

conductivity λ of solid wall that separates the two fluids and the heat transfer coefficient α for 

the interface between the solid wall and the two fluids. Determination of thermal conductivity 

is relatively easy because it is a material property. Heat transfer coefficient, as already 

mentioned, specifies the intensity of heat transfer from the fluid to the solid walls, and vice 

versa. This coefficient, however, is dependent on both the material properties of the flowing 

fluid and on flow character around the fixed wall. 

1.4. Dimensionless criteria 

Reynolds number (Re) defines the ratio of inertial and viscous forces and is 

determined from the boundary conditions and physical conditions as dimensionless criterion 

in order to specify a laminar or turbulent flow. Its value characterizes the flow in the transition 

region between laminar and turbulent flow [3].  


hdu

Re  ( 1.4.1) 

where so called hydraulic diameter hd  represents in case of the flow in the pipe the diameter 

of the pipe, in case of flow around the pipe as well as its diameter, u  is the mean velocity of 

the flowing medium. For the flow in the pipe, if the value is Re < 2320 it is a laminar flow 

(particles move in layers). At higher Re > 2320 it is a turbulent flow (swirl particles) [4]. 

Prandtl number is the ratio of the viscous and thermal diffusion, and is 

dependent on the material properties of the fluid. It refers to the thickness of boundary layers, 

the reference velocity and temperature. 

a

cp 




Pr  ( 1.4.2) 

For air it is possible to assume a constant value 0.7.  

 Grashof number is the ratio of buoyancy and viscous forces. Its value so 

indicates whether the fluid flow is significantly affected by gravity (thus lifting members)  

 
2

3

Gr


 hrefs dTTg 
  

( 1.4.3) 

 Fourier number is the ratio of conduction of heat to accumulation in the solid 

body  

2
Fo

hp dc 


  ( 1.4.4) 

  is the time constant. 
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Nusselt number expresses the influence of the flow on the wall heat flux, depending 

on the geometric reference parameter (which is well-defined). 

h

h

d

d 




 Nu
Nu   ( 1.4.5) 

The value of Nusselt number so specifies the ratio of convection to conduction (heat 

transfer to conduction). Heat transfer coefficient, as already mentioned, specifies the 

intensity of heat transfer from the fluid to the solid walls, and vice versa. This factor, however, 

is dependent on both the material properties of the flowing fluid and on flow character around 

the walls 

 Second definition of Nusselt number contains more measurable variables, such as 

thermal power P , characteristic dimension hd , area S  on which the heat transfer s 

determined, the temperature gradient between the wall temperature and the reference 

ambient temperature refs TTT - . The temperature gradient can be specified as a mean 

logarithmic difference. 

TS

dP h


Nu  ( 1.4.6) 

Heat transfer coefficient can be determined on basis of a number of empirical relationships 

and in practice the similarity theory is most commonly used. So if we know the value of 

Nusselt number, we can determine the heat transfer coefficient  . Nusselt number is 

generally a function of other similarity criteria 

 FoGr,Pr,Re,Nu f  ( 1.4.7) 

Heat transfer is divided by gravity into two modes: 

 Natural (free) convection - is dominantly controlled by buoyancy forces (gravity). The 

flow of fluid is then invoked only by changing the density (warm liquid rises, cold drops) 

 Forced convection - is dominantly controlled by the fluid flow through heat exchanger 

and around the plates. The flow is caused by an external force acting on the fluid (pumps, 

fans, etc.). Gravity is negligible in this case. 

In the case of forced convection, the value of Nusselt number is determined as a function of 

the value of the Re  number.  There are a number of empirical relations for calculating the 

Nusselt number in various simple geometries [24], see Tab. 1.3 

 

Tab. 1.1 Forced convection 

laminar flow around the plate, 

TS is constant 

3/12/1 PrRe664,0Nu L                  Pr0,6   



Lu
L Re , 

54 10.5Re10  L ,  L plate length 
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laminar flow around the plate, 

q  is constant 

3/12/1 PrRe908,0Nu L                  Pr0,6   



Lu
L Re , 

54 10.5Re10  L ,  L plate length 

turbulent flow around the plate, 

TS is constant 

3/15/4

.x PrRe0405.0Nu L            60Pr0,6   

 
85 10Re5.10  L  

laminar flow in the tube Nu=4.36   pro q=const. on the wall 

Nu=3.66   pro T=const. on the wall 

turbulent flow in the tube 
mPrRe023,0Nu 8,0 ,                       m=0.3 for cooling 

 
64 10Re3.10  L                              m=0.4 for heating 

laminar, transverse and 

turbulent flow across the tube 

38,0

1 PrReNu ěC
C       

Re                               C1                 C2  
0,4 ÷ 4                         0,989            0,330  
4 ÷ 40                          0,911            0,385  
40 ÷ 4 000                   0,683            0,466  
4 000 ÷ 40 000            0,193            0,618  
40 000 ÷ 400 000        0,0266          0,805                        

laminar, transient and 

turbulent flow across the tube 

bundle, NL is a number of tube 

column 

m

DC max,1D ReNu   pro ,10LN    40000Re2000 max,  m

D  

70.Pr  , constants C1 and m  are given in table 

SL – horizontal distance of tubes, ST – vertical distance 

of tubes 

 

Tab. 1.2 Constants for determining the Nusselt number when flowing across the tube 
bundle 
 

tubes in row ST/D= 1.25 ST/D= 1.50 ST/D= 2.00 ST/D= 3.00 

SL/D C1 m C1 m C1 m C1 m 

1.25 0.348 0.592 0.275 0.608 0.100 0.704 0.063 0.752 

1.50 0.367 0.586 0.250 0.620 0.101 0.702 0.068 0.744 

2.00 0.418 0.570 0.299 0.602 0.229 0.632 0.198 0.648 

3.00 0.290 0.601 0.357 0.584 0.374 0.581 0.286 0.608 
 

 

tubes in 
cross ST/D= 1.25 ST/D= 1.50 ST/D= 2.00 ST/D= 3.00 

SL/D C1 m C1 m C1 m C1 m 

1.000 
  

0.497 0.558 
    1.125 

    
0.478 0.565 0.518 0.560 

1.250 0.518 0.556 0.505 0.554 0.519 0.556 0.522 0.562 

1.500 0.451 0.568 0.460 0.562 0.452 0.568 0.488 0.568 

2.000 0.404 0.572 0.416 0.568 0.482 0.556 0.449 0.570 

3.000 0.310 0.592 0.356 0.580 0.448 0.562 0.482 0.574 
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Tab. 1.3 
laminar flow inside tube 

3/1)Pr(Re615,1Nu
l

d
  

Turbulent flow inside tube mPrRe023,0Nu 8,0 , m=0.3 for cooling 

                                    m=0.4 for heating 

Transverse flow around  tube 25.0

38.047,0

Pr

Pr
PrRe59,0Nu 










w

f
pro 0001Re10   

25.0

38.062,0

Pr

Pr
PrRe21,0Nu 










w

f
pro 000200Re1000   
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2. Transfer and its solution 

Understanding the tranfer of variables is the basis for many engineering applications 

including mechanical equipment, such as motors, pumps and transport systems (transport of 

oil, chemicals, food, etc.), energy systems and equipment [2]. In order to calculate the 

transfer of mass, momentum, energy, and other properties and substances through the 

surface, it is necessary to distinguish the movement of the fluid at various length scales - 

macroscopic scale (particles) and a microscopic scale (molecules). At macroscopic Eulerian 

approach it is necessary to determine the velocity field. Transfer of fluid particles via a 

surface is called a convective transfer. 

 Transfer defined at the molecular level is called diffuse transfer. Convection is zero 

if the fluid is not moving, but diffusion transport can also be zero at rest, eg. the existence of  

temperature gradient is determined only by diffusive transport of heat. During fluid flow both 

transfers are present, but one of them can be significantly higher than the second. For 

example at turbulent flow the convective mass transfer of momentum and energy can be 

surprisingly large. The surface over which the transfer is in progress, can be a real wall 

bounding the volume of fluid or fictitious wall located inside the fluid (the inner surface of the 

flow). To clarify the difference between both transfers, in       Fig.  2.1 and           Fig.  2.2 the 

convection of heat from the walls and diffusion (conduction) heat between two walls of 

different temperatures is shown. 

 

u 

qK

CC 

Ts 

Ts>Tvz 

 

      Fig.  2.1 Convective heat transfer 
 

T1 

T1>T2 qD 

 

          Fig.  2.2 Heat transfer by diffusion 

2.1. Definition of transfer  

2.1.1. Convective transfer 

Transfer kΓ  at some point of flow area is defined by the rate, at which the given quantity 

is transfered through the surface. In differential form it is defined  

SnuΓK dd 










  ( 2.1.1) 

where   general variable (scalar) 



Transfer and its solution  

21 

 

 Sd  element size of surface 

 


n  normal vector to the surface element Sd  

 






 


nu  creates a normal component of the velocity vector to the surface Sd  

 


u   is called flux density of variable  . 

 

 

dS 

S 

a 
ax 

az 

ay 

x 

y  

z 

n 

V 

   

Fig.  2.3 Coordinate system and surface 

definition dS 

        Convection of scalar   through 

surface S  is scalar defined by the 

surface integral  

SnuΓ
S

K d 






 


  ( 2.1.2) 

Surface integral is often called 

convective integral of flow or flux. The 

result of the integral, ie. convective 

transport is the value of the unit 
 
s


 (e.g. 

volumetric and mass flow rate) and  

is used more often than the flux density defined by unit 
 

sm2 


. Flux can be visualized, see  

Fig.  2.4. It is proportional to the density of the vector field, it is changing by the setting of 

direction of flow area and its size. Arrows coming from the area are sources (positive 

divergence), while ending on the area are sinks (negative divergence). In the case of three-

dimensional space the area is oriented so that the flux coming from the area is regarded as 

positive (in the direction of outward normal), and the flow entering the area is considered 

negative. 

 

Fig.  2.4 The value of the flux depending on the density of the vector field, the direction of 

flow area and its size 

 



Transfer and its solution  

22 

 

If you mark the enthalpy 

2

2

1












uUh , then the heat flux is generally defined as 

SnuhΓ
S

K d 






 


 ( 2.1.3) 

Significant role in momentum transfer is the determination of momentum flux, i.e. the 

flow of the velocity vector through the surface which is defined as  

SnuuΓ
S

K d 






 


 ( 2.1.4) 

At each point of area the transfer has a different value.  

2.1.2. Diffusion transfer 

The diffusion transfer arises from the microscopic movement of molecules, it depends 

on the orientation and shape of the surface and on the distribution of properties at a given 

point. It is useful to define a diffusion transfer flux at a given point, which has a dimension of 

the transported quantity per unit area and unit time. For fluids such as air and water, the 

relationship between the flow and gradient of transported quantities is modeled by linear 

relationship, which is sufficiently accurate for engineering applications. 

When determining the heat conduction according to the Fourier law, for example, the 

heat flux density vector is: 

Tq D 


   ( 2.1.5) 

The situation is similar for concentration.  

The total diffusion transfer is analogous to the total convective transfer given by the surface 

integral   

 






 


S

DD SnqΓ d   ( 2.1.6) 

2.1.3. Total transfer 

The total transfer is then expressed as the sum of convective and diffusion transfer  

DK ΓΓΓ    ( 2.1.7) 

2.1.4. Balance transfer equation  

The physical laws describing transfer are the conservation laws of mass, momentum, 

heat or other scalar variables. They are expressed by the energy equation, Navier Stokes 
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equations coupled with the continuity equation in general conservative form and describe 

laminar and turbulent flow regime.   

    VSSSnuV
t

VSSV

dddd  






 


 




 

accumulation    +      convection         =       diffusion      +       source

 

( 2.1.8) 

where   is variable and the members in the equation are sequentially accumulation, 

convection, diffusion and the source member, so the equation is also called convection - 

diffusion equation. 

This equation can be expressed in differential form (more common in textbooks of 

Hydromechanics and Thermodynamics). We use the divergence theorem to convert the 

surface integral to the volume integral.  

Equation (2.1.8) has the form 

     











VVVV

VSVVuV
t

dddd  



 

accumulation    +        convection           =          diffusion          +       source

 

( 2.1.9) 

Since the equation is true for any integral applied to any volume, so it is true for the 

expression under the integral  

      

     



Su

t













          

accumulation    +      convection         =          diffusion        +       source

 

( 2.1.10) 

If  represents the temperature, the substance or other scalar value, then it is a linear 

equation of the second order, if  represents velocity component, it is a nonlinear equation. 

The task to find a solution of equation ( 2.1.10) following boundary and initial conditions is 

called mixed problem. If the boundary conditions equal to zero they are called homogeneous 

boundary conditions, if the initial conditions equal to zero they are called homogeneous initial 

conditions. Instead of boundary conditions, conditions of another type may also be given, 

which are also called boundary. Consideration on the boundary and initial conditions for 

temperature is valid for general variable  . 

2.1.5. Boundary conditions  

At heat transfer flow modeling there are defined the areas filled with flowing fluid or 

solids. Areas are bounded by flow boundaries and walls. The walls can also separate the 

flowing fluids and are washed from both sides. At flow boundary and wall, the state values 

are entered based on available measurements (pressure, velocity, flow rate, temperature, 
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heat flow, etc.). A typical example is the tubular heat exchanger, which is measured and 

theoretically tested in the literature, see Fig.  2.5. 

 

     

 

Fig.  2.5 Tubus exchanger, simplified geometry and typical temperature patterns for both co-

flow and counter-flow exchangers. 

 

The flow surfaces are shown in the diagram as input1, input2, outlet1 and outlet2. The walls 

are simply defined by surfaces such as the inner, outer and supply tubes, but can also be 

defined in the model by a real volume (eg a tube wall of 3 mm thickness). From the scheme  

the following boundary conditions can be defined: 

 flow areas - input1, input2, outlet1, and outlet2 

 walls - tube inner, outer and supply 

In terms of geometry simplification, other significant areas of the region can be considered  

 symetry (the region is assumed to be symmetric by plane)   

 axi-symetry (the region is rotationally symmetrical). 

     

Fig.  2.6 Tubus exchanger, symmetry plane (left), solution area for rotationally symmetry 

(right) 
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     Boundary conditions need not be a 

constant value, but can be defined by 

functions, tables, etc.: 

 constants .konsty   

 polynomial function 

  ...)( 2

210  xAxAAxy ,  

where the coefficients are entered only of 

five significant digits 

 derivatives with respect to normal 

(OUTLET, temperature flux) 

 
.1konst

x

xy





 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
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]

y
[m
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u-polynom

u-po částech
lin. funkce

 

         Fig.  2.7 Velocity profiles 

 piecewice linear function        NN yxyxyxyx ,...,,,,,, 332211  

 combination of polynomial and piecewise linear function  

2.2. Numerical methods of solutions 

The aim of numerical methods for solution of partial differential equations is looking 

for isolated solution defined in a sufficiently small subarea using so-called discretized 

(algebraic) equations in basic points 

 dividing the area into isolated geometric elements - establishing a mesh 

 balancing the unknown variables in finite volumes or nodes and discretization  

 numerical solution of discretized equations in general form 

while the discretization error is defined as the difference between the solution of differential 

and discretized equations. The basic properties of numerical methods are: 

 level of accuracy of the discretization error and residual 

 level of stability  

There are some developments in the numerical solution of the equations defining the fluid 

flow and heat transfer.  

2.2.1. Difference method  

The oldest classical method is the difference method. The principle of difference 

methods for solving of differential equations can be described as follows  

 the area, in which a solution is looking for, is covered with mesh composed from a finite 

number of non-overlapping elements. The simplest mesh is:  
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the lines in one-dimensional case 

 

rectangles in two-dimensional case 

 

 

hexahedrons in three-dimensional case 

 

x 

z 

y 

 

 

 at these points the derivative will be replaced by differences of various precision (eg. 

x

TT

x

T

x

T ii

ii 



























 1 ), relationships necessary for derivative are derived from 

Taylor series by specific labeling associated with heat conduction, convection, etc. 

 differential equation goes into a system of algebraic equations with unknowns, which 

determine the approximate value of the unknown function in all mesh nodes  

 system of algebraic equations is solved numerically  

 

 Solved example 

Solve the heat equation in the rod given by the parabolic differential equation 
2

2

x

T
a

t

T










. 

The solution is found in a rectangle D  xt , and must satisfy the conditions:  

Initial conditions     LxCxTxT O  0200, 0 . 

Boundary conditions (BC)         CtTtLTCtTtT O 0

21 20,,80,0   
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Fig.  2.8 The area geometry, boundary conditions, 

grid 

Discretized equation of heat 

conduction has a form 

 
2

,,1,1,1, 2

x

TTT
a

t

TT ninininini








 
 

and after modification it applies 

2

,,1,1

,1,

2

x

TTT
taTT ninini

nini







  

Therefore, we can express 1, niT  

explicitly by using the values in the 

previous time step n. In this case we 

can find a solution in Excel. 

In the following Tab.  2.1 it is shown (using Excel) definition of task and solution. The gray 

values can be changed, that is the size of area, the number of mesh elements, heat transfer 

coefficient and boundary conditions. 

 

Tab.  2.1 Table of setting parameters for iterative calculation  

a= 0.1  T(x=0)= 80  koef= 0.5      

L= 1  T(x=L)= 20  x= 0.1      

n= 10  T(t=0)= 20  t= 0.05      

             

time  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

BC 0 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 

 0.1 20.00 50.00 50.00 57.50 57.50 61.25 61.25 63.59 63.59 65.23 65.23 

 0.2 20.00 20.00 35.00 35.00 42.50 42.50 47.19 47.19 50.47 50.47 52.93 

 0.3 20.00 20.00 20.00 27.50 27.50 33.13 33.13 37.34 37.34 40.63 40.63 

x 0.4 20.00 20.00 20.00 20.00 23.75 23.75 27.50 27.50 30.78 30.78 33.59 

 0.5 20.00 20.00 20.00 20.00 20.00 21.88 21.88 24.22 24.22 26.56 26.56 

 0.6 20.00 20.00 20.00 20.00 20.00 20.00 20.94 20.94 22.34 22.34 23.93 

 0.7 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.47 20.47 21.29 21.29 

 0.8 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.23 20.23 20.70 

 0.9 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.12 20.12 

BC 1 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 
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Convergence of problem depends on the choice of time and space step. Another problem is 

the efficient solution of this algebraic equations systems. 

Fig.  2.9 shows changes in the temperature distribution along the length of the rod in 

dependence on time. After converged task the temperature would be spread linearly from left 

to right boundary conditions. Unfortunately, the graph would be unreadable. 
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Fig.  2.9 Graphical presentation of solution in Excel 

 

2.2.2. Finite volume method 

Finite volume method (FVM) [1] , [13] consists briefly in three basic steps  

 dividing area into discrete volumes using general curvilinear grid 

 balancing unknown quantities in individual finite volume discretization 

 numerical solution of discretized equations  

Fluent defines discrete final volumes using non-staggered scheme, where all variables are 

stored in the centers of finite volumes. 

The physical laws of transfer are the conservation laws of mass, momentum, heat or 

other scalar quantities and describe the laminar and turbulent flow regime. The balance 

equation for a general variable has a shape (see eq. ( 2.1.8)) 
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    VSSSnuV
t

VSSV

dddd  






 


 




 

  accumulation  +      convection         =         diffusion     +     source 

 

After discretization of this general transfer equation in the control volume we obtain: 

    VSSSuV
t

f

N

f

ff

N

f

fff

ff

 







 .  ( 2.2.1)  

where fN  is the number of areas surrounding the cells, f   is value of variable   passing 

through the surface f , 


 fff Su  is mass flow through the surface f , 


fS  is the size of the 

surface f , f  is gradient of variable   on surface f , V  is cell volume. 

All the equations solved in ANSYS Fluent have the same general shape on any 

mesh. The discretized transmission balance equation contains a general variable in the 

center of cells in its vicinity. This equation is generally nonlinear. Its linearized form is 

baa nbnb nbP    ( 2.2.2)  

where the sum is performed over the neighboring cells (in 1D case is i=E, W; in 3D case i=N, 

S, E, W, F, B,). anb are coefficients, which contain contributions from convection, diffusion 

and source members. The sign is visible from z  Fig.  2.10. 

 

 

Fig.  2.10 Coordinate scheme using special notation of cells for 1D and 3D model 

instead of subscripts, where N – North, S – South, E – East, W – West, F – Front, B – Back 

 

 

Each iteration consists of the steps that are shown in diagram on Fig.  2.11 and are 

described as follows 

 equations of motion for unknown velocity components are solved using the pressure 

values in order to update the velocity field 

 velocity specified in the previous step can not satisfy the continuity equation, thus the 
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pressure correction and subsequent correction of velocity field shall be determined 

 using new values of velocity the equation for the turbulent energy k and dissipation  is 

solved 

 another equation to determine the temperature and other scalar variables are solved 

 physical properties of fluids (eg. viscosity) must be updated 

 checking the convergence 

  

Solution  
of mass equation 
 
 

Solution of continuity equation  
(pressure correction) 

Update velocity and pressure 

Check convergence 

Update fluid 

properties 

Solution of scalar equation  
update turbulent variables 
update scalar 

END START 

 

Fig.  2.11 Diagram of solution algorithm in  Fluent [1]  

2.2.3.  Geometry and computational grid generation 

Numerical finite volume method is based on a system of non-overlapping elements, 

finite volumes. Originally, the finite volume method was based on finite volumes of curvilinear 

rectangles,  rectangles in two-dimensional case and blocks or general hexahedron in three-

dimensional problems (see Fig.  2.12).  
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Fig.  2.12 Shape of finite volume 

 

Such a grid is called a structured grid. The fundamental rule is that the elements 

boundary must adjacent with the single element boundary, so we can not arbitrarily refine 

grid (it is analogous to the method of finite differences, including the possibility of using 

indexing). Also, the resulting computational region is then a block or a rectangle. Today there 

is starting to take a new approach of building a so-called unstructured grid. The final 

volume is a 3D cuboid, tetrahedron, and pyramid prismatic element. The benefits have been 

validated in problems of elasticity, solved by finite element method. 

The above listed elements can now be combined to obtain the optimal grid near the 

walls where the rectangles and blocks are used (to get more accuracy) and in other areas 

where there are no large gradients of solved variables due to existence of the boundary 

layer, we apply the remaining elements. They provide an easy change of grid density, see 

Fig.  2.13. 

Mesh with prisms in a boundary 

layer region

Mesh with prisms in a boundary 

layer region

 

Fig.  2.13 Using the different types of elements [1]  

 

To create geometry and grid the different CAD software to create a grid are used. It should 

be noted that it is appropriate to use the programs recommended in the manuals Ansys-

block tetrahedron pyramid prizmatic 
element 
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Fluent, because the grid which is created in software solving the problem of deformation or 

thermal conduction, is quite different from grid generated for the flow problem. 

2.2.4. Choice of interpolation scheme 

FLUENT stores the components of velocity and scalar quantities in geometric centers of 

finite volumes defined by grid. Because the calculation process, the required values of these 

variables on the border of finite volume are used. These values are obtained by interpolation, 

while you can choose between the following variants differing in order of accuracy 

(ascending) 

 power interpolation 

 quadratic upwind interpolation (QUICK) 

 second-order interpolation / central difference 

 QUICK 

During large changes in pressure and flow it should be available to compute with the lowest 

order of accuracy (which is predefined) and after a few iterations to use higher order of 

accuracy (for vortex flow with heat transfer, dissipation, etc.) 

2.2.5. Convergence and residuals 

During flow simulation using Fluent it is very important to obtain convergent solutions. 

The measure of convergence are residuals, which represent the maximum difference 

between two corresponding values at the same grid point in two consecutive iterations. 

Residuals are evaluated for all values computed in each iteration step and are displayed for 

the selected variables. 

 

Fig.  2.14 Iteration in numerical steady calculation 

 

i-th iteration 

i+1-th iteration 

Pi 

Pi+1 
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It is also possible to assess at what point it is the highest residual value. Residuals are used 

to evaluation convergence. Generally, the solution converges very well when the normalized 

residuals are reduced to the value of the order of 1.10-3 and enthalpy residuals to the value of 

the order 1.10-6. 

2.2.6. Convergence acceleration 

Convergence is influenced by many factors such as initial conditions, a large number 

of cell, relaxing factor, etc.  

To accelerate convergence, it is proposed to use an initial estimation of the variables 

important for flow which is the best way to start solving task successfully. Otherwise, all 

variables defined by initialization, are often considered to be zero at the beginning of the 

calculation. The most important examples of setting the initial conditions are: 

 temperature for solution of heat transfer problems when using the equation of state 

 velocity at a large number of cells 

 temperature and velocity in soution of natural convection 

 flow with chemical reaction, when it is available to set the temperature and the mass 

fraction of species 

An important technique to accelerate convergence is the step by step technique (step by 

step from simple to more complex tasks). To solve the problem of heat transfer it is good to 

start the calculation from isothermal flow, in case of reacting flow to start the solution without 

the inclusion of additives. The problem is defined at first complex and then would be 

necessary to select the variables for which initial state will be resolved .  

2.2.7. Relaxation 

Due to nonlinearity of differential equations it is not generally possible to obtain values 

of all variables by solution of originally derived approximations of difference schemes. 

Convergence can be achieved using relaxation, which reduces the changes of each variable 

in each iteration. Simply said, the new value 
1, iP
 in the finite volume containing point  P  

depends on the old value from the previous iteration
iP,
, the new value from the current 

iteration
vypiP ,1, 

  (or calculated changes
iPvypiPP ,,1,   

  and relaxation parameter 

1,0  
follows 
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Fig.  2.15 Definition of relaxation parameter 

 

 

  vypiPiPiP ,,,, . 11 1     ( 2.2.3) 

 

These relaxation parameters can be set for all computed variables. Especially for velocity 

they are defined as very small, the order of tenths to hundredths. It is desirable during the 

calculation to change these values and accelerate the convergence, ie. if the residual 

changes are large in the transition from one iteration to another, than set a small relaxation 

factor and thus to damp non-linearity, if the residual changes become constant, you should 

increase the relaxation factors. 

 

vypiP ,1,   

iP,  

0 1 1,0  

1, iP  

 

  

P  


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3. Heat transfer by conduction 

3.1. Fourier equation 

Heat conduction in solids is described by the first law of thermodynamics, ie the Fourier 

equation, which has the form: 

 Ta
t

T






 

respectively using components 











2

2

2

2

2

2

z

T

y

T

x

T
a

t

T

















 

( 3.1.1) 

If the area is geometrically simple (for example, heat conduction in the plate) and if the initial 

and boundary conditions are simple, the problem can be solved analytically (1D) and 

numerically (1D, 2D, 3D) due to the linearity of the equation. If the plate is of large size, the 

influence of the plate ends can be neglected, then the solution can be simplified to 1D resp. 

2D task, see Fig.  3.1. 

 

1D - line 2D rectangle  3D block 
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
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
 

   

Fig.  3.1 1D, 2D, 3D computational area for large-size plate 
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In the case of the axially symmetric task (heat conduction in the rod), the simplification is in 

Fig.  3.2  and the equations are then defined in the cylindrical coordinate system. 

 

1D - line 2D rectangle 3D cylinder 

   

Fig.  3.2 1D, 2D, 3D computational area for cylinder 

 

The images also show the meaning of boundary conditions, which must be in agreement with 

the experiment. 

3.2. Equation of heat transfer by conduction 

To determine the temperature distribution the Fourier's law expressing the law of energy 

conservation is used: 

    hSTh
t

 



 ( 3.2.1) 

where   density of the solid material  

 h  enthalpy of conductive material, cp(T – Tref) 

   thermal conductivity  

 T  teperature 

 hS  heat source  

In the above formulas the calculating enthalpy is defined for the reference temperature (e.g. 

K15.298refT ), which can be changed according to the situation. 

 When problem solving, where there is still movement or rotation of the object, then 

these effects are included in the solution of the energy equation: 

    hSThvh
t

















 ( 3.2.2) 

Convection of heat is included in the energy equation for flow-limiting regions due to the 

wall's velocity movement. 

Specifying the thermal conductivity allows to solve problems in which the solid 

conductive region is formed by separated walls of different materials and characteristics. The 

density and specific heat of the wall are important in solving the time-dependent problems. 
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Typical examples are the solutions of conveyor belts, moving rolled steel strip in furnaces, 

problems with rotating machine parts etc. 

All physical properties can be constant or dependent on the temperature or on the 

pressure. The most important variable in this sense is the density. The above formula is 

generally assumed in three dimensional space. All variants such as 

 heat transfer predominant in one or two direction 

 heat transfer in axisymmetric (rotating, cylindrical) coordinate system (pipes) 

are special, simplified case. 

3.3. Boundary conditions 

Heat conditions can be defined by four variants, see Fig.  3.3. 

 Constant temperature 

 Constant heat flux 

 Zero heat flux - adiabatic or isolated wall 

 Convection – heat transfer coefficient and reference temperature (Surface 

temperature influenced by convection)  

 

  

Constant temperature surface 

  STStT ,  

Adiabatic or isolated wall 

 
0





n

StT ,
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Constant heat flux 

 
Sq

n

StT







,
  

Surface temperature influenced by 

convection  

 
  StTT

n

tST
ref ,

,





   

Fig.  3.3 Types of boundary condition 

 

The last boundary condition is complicated because it involves the influence of fluid flow 

around the walls. Determination of the external heat transfer coefficient is given empirically 

and varies due to different fluids and flow velocities. The temperature on the outer wall is the 

result of calculation. 

All types of conditions can be time-dependent, if required by their character. 

3.4. One-dimensional heat conduction 

3.4.1. Analytical solution 

At any given simplification there is considered time independent (stationary) task of 

heat propagation in an infinitely large plate of thicknesses l , see Fig.  3.4. 
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T(t,0) 
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ql  

wall_top 
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Fig.  3.4 Scheme of large plate of a given thickness in the coordinate systems and solution 

area – red line (1D) 

 

The equation for this problem is  



















x

T

x
.0  ( 3.4.1) 

This homogeneous equation has nonzero solutions for non-zero boundary and initial 

conditions, as shown in Fig.  3.4. Thus, when a constant heat conductivity   is supposed, 

the solution can be deduced 


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21 CxCT   

( 3.4.2) 

If they are given boundary conditions, e.g.    10 TT   a   2TlT  , then  

12211 0 TCCCT   

l

TT
CTlCClCT 12

111212


  

The solution is then in the form 

1
12 Tx

l

TT
T 


  ( 3.4.3) 

This result is also confirmed by the numerical solution in Fluent.  
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If the heat source inside the area given by heat flux q   is assumed, then the differential 

equation has the form: 

0















q

x

T

x
  ( 3.4.4) 

The general solution has the form: 

21

2

2
CxCx

q
T 





 ( 3.4.5) 

The constants are determined from the boundary conditions as well. The solution is a 

parabola, in case of identical conditions in both border areas it is symmetric parabola. 

3.4.2. Numerical solution  

This chapter illustrates on how to set and solve the temperature distribution in the 

plate of a given thickness in Fluent. Subsequently, this solution will be compared with the 

analytical solution. The task is: 

 define the physical model, the physical properties of the material 

 define a mathematical model, boundary conditions 

 create geometry and grid 

 specify boundary and initial conditions in Fluent, calculation 

 evaluate the computed values 

 compare the solutions with the analytical solution 

 apply the same technique to different variants of boundary conditions and heat sources 

  

x 

y 

l 

T(t,0) 

q0 

T(t,l) 

ql  

wall_top 

wall_ bottom 

h 

 

Fig.  3.5  Scheme of endless plate (2D) 
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Solve the temperature distribution in an infinitely large steel plate of a given thickness. 

The physical model is given by the shape of the area whose scheme is shown in 2D in Fig.  

3.5 and the dimensions and physical properties in the table (1D area can not be resolved, it 

does not correspond to reality). 

The dimensions of the area and physical properties of various materials for calculating 

variants are specified in Tab. 3.1 and Tab. 3.2.  

 

 Tab. 3.1 Geometry of area 

thickness of area l  [m] 0.01 

height of area h  [m] 0.1 

 

Tab. 3.2 Physical properties of material (steel, aluminum, copper, wood) at 300 K 

materiál wood steel aluminium cooper 

density   [kg∙m-3] 700 8030 2719 8978 

specific heat capacity pc  [J∙kg-1∙K-1] 2310 502.48 871 381 

thermal conductivity   [W∙m-1∙K-1] 0.173 16.27 202.4 387.6 

 

Boundary conditions are defined on the left wall by temperature 0T  and on the right 

wall by temperature lT  or by heat flux lq  or by the ambient temperature T and the external 

heat transfer coefficient  . For solution it is prepared five variants of boundary conditions (A 

to E in Tab. 3.3) to be tested, because their task and the calculation is using identical  

geometry very easy. Due to the large plate dimensionality above and below the conditions of 

symmetry are defined. 

 

Tab. 3.3 Boundary conditions 

variant left wall  

 

  10 TT   

right wall  

 

  2TlT   

right wall 

 

 
lq

x

lT





   

right wall 

 
  lTT

x

lT





   

 l  T  

A 50 -10    

B -20 100    

C 50  162700   

D 50  0   

E 50   40 -10 
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Matematical model 

In this task there is no flow, it is fictionally solved with zero velocity of flow, therefore, 

as laminar. The temperature distribution is controlled by the above-mentioned differential 

equation. 

 

Geometry and grid generation 

In an environment DesignModeller there is creating the exact geometry using a 

technique similar to the environment CAD programs. In addition, we use the options of this 

program to form grid, see Fig.  3.6. 

. 

  

Fig.  3.6 Computational grid with red line marked for detailed evaluation of temperature and 

detail of mesh. 

 

The results of the calculation of variant A 

For clarity the evaluation options are presented, i.e. filled isolines of temperature, and 

other variables are meaningless, even if they are offered, such as pressure, velocity, etc. 
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Fig.  3.7 The temperature distribution in the whole area [oC] 

 

The temperature distribution in a cross section in the middle of area is in Fig.  3.8, which 

shows a linear temperature decrease from 50 ° C to -10 ° C. This is consistent with the 

analytical solution (line connecting boundary temperature values) in the previous chapter. 

This figure can be edited in Excel transmission data in text format.  

 

Fig.  3.8 The temperature distribution in the cross-sectional area 

 

Very interesting is the evaluation of the heat through the left resp. right wall: 
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Tab. 3.4   

heat through the wall  Q   [W] steel 

wall left 9761.44 

wall right -9762.65 

 

Heat transfer through the wall elements in unit [W∙m-2] can also be evaluate in detail in every 

location of the wall. In this simple case it is constant, because the temperature distribution in 

the x direction is linear, thus there is one slope (the derivative of temperature is the flow rate) 

but in general this result is not realistic. 

 

Fig.  3.9 The distribution of heat flux through the left and right wall 

 

The calculation results of other boundary condition variants for steel 
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Fig.  3.10 The temperature distribution in the cross-sectional areas for variants  A-E 

 

Tab. 3.5 

heat through the wall Q   [W] A B C D E 

wall left 9760 -19522 -1623 -4. 365 22.5 

wall right -9764 19526 16270 0 -23.4 

 

Heat flux through the wall in [W∙m-2] can be also evaluated in detail in each grid cell. Because 

it is constant, it is evaluated only the average value for each variant: 

 

Tab. 3.6 

average heat flux through the 

wall q   [W∙m-2] 
A B C D E 

wall left   97518 -195216 -162536 -126  225 

wall right -97720   195265  162700   0 -234 

 

Values are approximately ten times larger, because the flow area is 0.1 m2. 
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3.5. Temperature distribution at the transient transfer  

A mathematical model solved by FVM is still the same, only in the equations there will 

be considered a member generally called accumulation and containing time derivatives. 

Thus, the solution will be defined with additional time step, which is estimated from a real 

setting and the number of time steps. The total time is thus the product of the time step and 

the number of steps. 

Solve the problem of coating of infinite large aluminum sheet of given thickness by 

epoxy, which must be applied at least 5 min at 150°C. The process thus takes place in two 

stages. In the first stage the aluminum heats by the air in a furnace at a temperature of 

175oC. In the second stage it is cooled in the space by air at temperature of 25oC. 

The physical model is given by the shape of the area whose scheme is shown in 2D 

in Fig.  3.11, only sizes will be updated. Physical properties and boundary conditions are 

defined below in tables. 

 

Tab. 3.7 Geometry of area 

thickness area l  [m] 0.003 

height area h  [m] 0.01 

 

Tab. 3.8  Physical properties of material 

(aluminium) at 300 K 

material aluminium 

density   [kg∙m-3] 2719 

specific heat pc  [J∙kg-1∙K-1] 871 

heat conduction   [W∙m-1∙K-1] 202 
 

 

x 

y 

air 

wall left 

 q0 

symetry 
top 

symetry 

bottom 

h 

lhlinik 
air 

Wall right 
 ql  

 

Fig.  3.11 Scheme of solved task 

 

Boundary conditions 

The boundary conditions are defined on the left and right wall by the same ambient 

temperature and the same heat flux lq , influenced by the air flow, while the cooling or 

heating variant is distinguished. Due to the large size of plate, symmetry conditions are 

defined above and below the region. The temperature for this boundary condition must be 

defined in Kelvin. 
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Tab. 3.9    

Variant  l  [W∙m-2]  T  [oC]  T  [K] 

A heating 40 175 448 

B cooling 10 25 298 

 

Mathematical model 

There is no flow in this task, so it is fictitious flow with a zero-velocity, as a laminar. 

The temperature distribution is controlled by the above differential equation. The first stage is 

solved, when the heating takes place for a time estimated in advance, 

10 min = 600 s.  

From the graph of the mean aluminum temperature vs time (Fig.  3.12), it is possible to see at 

what time the desired temperature (150 oC) is reached. After 5 min, it is possible to change 

the boundary conditions given in the second cooling stage and to continue the calculation. It 

is again clear from the graph when the required temperature of the aluminum plate is 

reached. Therefore, the calculation could be shortened by the period corresponding to the 

crossed-out part of the curve, that is, by the time 

T = 600 – 463 = 137 s 

Thus, the calculation of the heating would be set not for 600 seconds but for 463 seconds, 

and then the boundary conditions would change to the cooling conditions. 

Notes: 

Of course Fluent allows you to automatically change the boundary conditions when 

the required time and temperature is reached using UDF functions (User Defined Function). 

The temperature distribution throughout the area is constant, so the cross-sectional 

temperature will not be plotted. 

 

Results 

The result is a temperature vs time plot showing the change in boundary conditions in 

Excel. 
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Fig.  3.12 Temperature vs. time graph 
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4. Mass and momentum transfer 

4.1. Continuity equation  

Continuity equation is identical for ideal and real fluid, ie according to law of 

conservation of mass (resp. mass flow rate). The sum of the temporal and convective flow 

change is equal to zero eventually to source member (e.g. flue gas from the stack in the 

solved area): 

 
z

SV

SdSnudV
t

 
→→

∂

∂



 (4.1.1) 

You can also write the continuity equation in differential vector form: 
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t











 




 (4.1.2) 

or in differential form: 

       
z

zyx S
z

u

y

u

x

u

t



















 
. 

 

(4.1.3) 

This equation is the general equation of continuity for spatial unsteady flow of 

compressible fluid. 

For steady flow of an incompressible fluid ( = const) the continuity equation is 

expressed by the relationship in vector form (source equals zero): 

0


u  (4.1.4) 

In case of pipe flow and compressible respectively  incompressible fluid a simplified well 

known relationship is applied and mass respectively volumetric flow rate VQ is constant  

.konstSuQm    resp. .konstSuQV   (4.1.5) 

4.2. Navier-Stokes (momentum) equation 

Balance of forces in the flow of a real fluid is given by the Navier-Stokes equations 

expressing the relationship, when inertia force is equal to the sum of the mass and 

surface (pressure and friction) forces. 

Pos FFF


        (4.2.1) 

 In the real fluid flow we choose elementary volume Vd . To that fluid volume the 

external volume force oF


d  is applied (e.g. gravity, centrifugal force or general force vector 
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defined by acceleration 


a ). Differential of mass force and consequently the total mass force 

is given by 

 VamaF o ddd
→→→

 
V

o VaF d
→→

 (4.2.2) 

Similarly, the inertial force is determined by the fluid acceleration (substantial derivative) 

t

u

D

D


, 

 V
t

u
m

t

u
F s d

D

D
d

D

D
d 

→→
→







V

s V
t

u
F d

D

D
  (4.2.3) 

Surface force that includes both pressure and friction force can be written using molecular 

stress tensor 


Π , ie. both shear and normal stress  [4] [5] [10] : 

 



 p  

where p  in the normal component of the stress (static pressure), which specifies the 

pressure force in the direction of inner normal in hydromechanics, and so that a pressure 

force is defined with a minus sign, 


  is the shear stress tensor, 


  is a unit tensor with 

components which may take the values 1 if i = j and 0 if i ≠ j. To illustrate the mathematical 

presentation of the friction forces the simplified Newton relationship applied in the coordinate 

system is used (see Fig.  4.1): 

 

Fig.  4.1 Velocity profile depending on coordinate y [11]  

 

y

v

d

d
   (4.2.4) 

This already known form expresses the relation between viscous stress and velocity 

derivative according to one direction perpendicular to the movement. 

Vector-tensorial formulation of shear stress in space is [8] : 
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2
 (4.2.5) 

where 


v  is tensor of velocity gradients with components j

i

v
x 












, 
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v 

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
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

 is transposed 

tensor of velocity gradients with components i

j
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
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






 and  







vdiv  is divergence of velocity 

vector. For incompressible fluid the 0






vdiv . Then the differential of surface forces is  
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where 


n  is outer normal vector to element of closed surface dS. 

The balance of all forces using vector notation for general compressible fluid in a 

rectangular coordinate system has the form  


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 (4.2.7) 

where 


uu  is so called dyadic product of vectors, see chap. 13.1. Equation is called Navier - 

Stokes equation. This equation for illustration can be formally written into three coordinate 

directions x, y, z in case of incompressible flow: 
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  (4.2.8) 

 For one-dimensional flow, this equation is reduced like the continuity equation into a 

very simple form 
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  (4.2.9) 

From equation above you can easily deduce known Bernoulli equation. By solution of flow 

field the velocity and pressure distributions is calculated. In addition to the momentum 

equation the continuity equation applies too.  

All physical properties can be constant or dependent on the temperature or on the 

pressure. The most important variable is the density. 

In the system of differential Navier - Stokes equations and continuity equation there are 

four unknowns, ie. velocity components zyx uuu ,,  and pressure p . To solve these 

equations the external acceleration 


a , fluid density   and boundary conditions must be 

defined. Navier - Stokes equations are non-linear partial differential equations and are not 

generally solvable. The analytical solution is available for simpler cases of laminar flow. 

Nowadays even complex cases of laminar and turbulent flow are solved using numerical 

methods, eg. finite volume method and finite element method. 

4.3. Conditions on flow boundaries and walls 

       For two flow boundaries only following 

basic combinations of boundary conditions 

may occur, (a combination of input velocity 

and output velocity can not occur because the 

velocity on the second input is calculated from 

the continuity equation).  

 

 

 

     outlet 

 

 

  

    velocity      pressure static.

   

 

 

    velocity   pressure static.. 

 

 

 

   pressure total. 

  

Fig.  4.2 Combination of input and 

output boundary conditions 

 

Tab. 4.1 Boundary conditions on flow boundaries and walls 

 Type (Fluent) Variable Unit 

INLET VELOCITY INLET velocity u  [ms-1] 

 MASS FLOW 

RATE   
mass flow rate mQ  [kgs-1] 

 PRESSURE 

INLET 

total pressure  [Pa] 
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2

2

1
upppp statdynstattot   

OUTLET OUTFLOW condition of stable flow  

 0,0 









n

p

n

u
 

 

 PRESSURE 

OUTLET 

static pressure statp
 

(equals zero at flow into 

atmosphere)
 

[Pa] 

 MASS FLOW 

RATE   
mass flow rate mQ  [kgs-1] 

WALL WALL 0u  is default (moving wall – 

insert velocity - eg. rotating or 

sliding wall), 

 

 WALL shear stress – fluid adheres to the 

wall (no slip)  

 

 

Note: 

For compressible flow 

 1
2

2

1
1








 







Mastattot pp  ( 4.3.1) 

where totp  total pressure 

statp  static pressure 

Ma Mach number 
  50.

Ma
srT

u

c

u




 

r  specific gas constant 
M

R
r  , M  is the molecular weight 

  rate of specific heats 
V

p

c

c
  

c sound speed in fluid 

 

When entering a pressure condition, it is necessary to define the direction of flow with the 

components of the velocity or flowing in the normal direction to the boundary. 

Static inlet pressure must be specified for supersonic flow. 
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If the flow is influenced by buoyancy forces, the pressure field and the total and static 

pressure input values are automatically increased by the hydrostatic pressure in the 

numerical calculation: 

pgxp iref    ( 4.3.2) 

Thus the deviation from hydrostatic pressure is entered into the boundary condition, it is 

calculated and also evaluated. However, it is necessary to enter a reasonable reference 

density value at the reference temperature. 
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5. Conduction and convection at laminar flow 

5.1. Energy equation  

Energy equation is derived from the Navier-Stokes equation by scalar multiplication of 

velocity vector and a coefficient of 0.5. Then the equation will complement by other members 

expressing the internal energy 

   




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






 





VSS

SVV

VSSST

SnuEV
t

E
V

t

E

ddd

ddd
D

D








 

      hSuTpEuE
t








 






 






 

( 5.1.1) 

where the total energy 


 uuUE
2

1
 is the sum of the internal and kinetic energy,   is the 

coefficient of molecular thermal conductivity, the second term on the right side represents the 

heat generated due to friction, hS  involves chemical reactions and other heat sources. 

Introduce the concept of enthalpy change h , which is equal to the heat that the system 

performs at constant pressure (if no volume work take place) and is defined by the relation  

 


p
Uh   

then 


 uu
p

hE
2

1


. Change of entalpy  is defined for ideal gas as  

 

T

T

p

ref

dTch                                 [J∙kg-1]  ( 5.1.2) 

and for incrompressible fluid (incrompressible gases and liquids) as 

 


p
dTch

T

T

p

ref

                           [J∙kg-1]  ( 5.1.3) 

In the above enthalpy equations, the calculation is defined for the reference temperature (eg.
 

K15.298refT ), which can be changed according to the situation. 

 State function S
 
is called entropy and is defined by formula  



T

Tref
T

dQ
S

     



T

T

V

ref

dT
T

c
S  ( 5.1.4) 
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5.2. Mathematical model of laminar flow with conduction and 
convection  

In the vast majority of cases, heat transfer is carried out simultaneously by conduction 

and convection. The mathematical model consists from following equations:  

 continuity equation zSu
t











 




 

 momentum equation - Navier - Stokes equations at laminar flow 

  mSapuu
t

u
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
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

















 

 energy equation       hSuTpEuE
t








 






 






 

The solution is complemented by boundary conditions on the flow boundaries and on 

the wall (see chapter above). In solution of conduction and convection we will model more 

areas, some of which will be defined as the flowing medium (conduction and convection), 

some areas will be only solid wall given by thickness where the detailed temperature 

distribution (conduction only) will be resolved. Then between areas there exist a special 

interface with special boundary conditions. On the following more or less simple examples of 

typical energy applications the advantage of numerical finite volume method will be 

demonstrated. 

5.3. Boundary conditions at laminar flow with conduction and 
convection 

In isothermal flow the boundary is meant thin wall surrounding fluid with the boundary 

conditions given only by fluid variables. In the case of non-isothermal flow the boundary 

conditions depend on each specific case, ie. if it is necessary to use the full model, partly 

simplified model or simplified model of heat transfer: 

 full model - it solves the temperature distribution in the flowing medium, in the tube wall 

(conductive zone) and in the environment (air), the boundary conditions are defined by 

external thermal environmental conditions 

 partially simplified model - it solves the temperature distribution in the flowing medium 

and in the tube wall (conductive zone), it is necessary to define the temperature or heat 

flux density on the outer wall of the tube  

 simplified model - it solves the temperature distribution in the flowing medium with a 

defined wall boundary of zero thickness (can also respect the thermal resistance of the 
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specified wall thickness) with defined non-izotermal properties and boundary onditions.  

Different approaches are shown in Fig.  5.1 

 

full model 

fluid + wall + neighborhood of tube 

partially simplified model 

fluid+pipe wall 

 simplified model 

fluid + thin wall 

Fig.  5.1 Fluid flow in the tube  fluid,  tube wall,  neighborhood of tube 

 

The next chapters will clarify the definition of special boundary conditions at the 

boundary of the area and at the interfaces between different material areas. 

The boundary is the most distant surface of zero thickness with defined boundary 

conditions. On the boundary the flow conditions (chap. 4.3) and conditions of heat transfer 

must be specified.  

 

 Type (Fluent) Variable Unit 

INLET VELOCITY INLET velocity u  

temperature T 

[ms-1] 

[K] 

 MASS FLOW 

RATE   
mass flow rate mQ  

temperature T 

[kgs-1] 

[K] 

 PRESSURE 

INLET 

total pressure 

2

2

1
upppp statdynstattot 

 

temperature T
 

[Pa] 

 

 

[K] 

OUTLET OUTFLOW condition of steady flow 

 0,0,0 














n

T

n

p

n

u
 

 

 PRESSURE 

OUTLET 

static pressure statp
 

[Pa] 

 

   

interface 

boundary 
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(equal zero at flow into the 

atmosphere) 

temperature T 

 

[K] 

 MASS FLOW 

RATE   
mass flow rate mQ  

temperature T 

[kgs-1] 

[K] 

WALL WALL 0u  is default (moving wall – 

insert velocity) 

temperature T 
constant heat flux density q 
zero heat flux density (insulation) 
q=0,  

convective heat transfer , Tref 

radiation 

 

 WALL shear stress – fluid adheres to the 

wall (no slip) (can be specified 

shear stress and roughness for 

turbulent flow). 

temperature T 
constant heat flux density q 
zero heat flux density (insulation) 
q=0,  

convective heat transfer , Tref 

radiation 

 

 

If the heat transfer is solved, at the border there are setting the temperature 

conditions, see chap. 3.3 (the latter characterizes the radiation). 

The interface can be simplified regarded as single - or bilateral wall zone. If the wall zone is 

two-sided wall, i.e. the wall forms the interface between two areas, such as the interface 

fluid/wall or wall/wall for the problem of heat transfer, then it is possible to model the thermal 

conductivity inside the boundary walls and the inner walls. Furthermore, there exists also the 

option to choose whether or not conditions for two-sided wall are linked (COUPLED).  

 Fig.  5.2 can monitor the temperature distribution in the flowing medium and at the 

wall when on the outer wall surface a constant temperature condition is given. Heat transfer 

is affected by the material, i.e. wall and water conductivity, and of course by the flow. 
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Fig.  5.2 Detail of the end of solved area with a temperature distribution for partially simplified 

approach. 

5.3.1. Boundary conditions on thin wall 

As expected, the wall has zero thickness. If the wall thickness is of the non-zero, then 

the parameters for calculating of the thermal resistance of the thin wall can be set and you 

can model a thin layer of material between two zones, eg. piece of sheet between the two 

zones of fluid coating solids, or the contact resistance between two solid regions. FLUENT 

solves the 1D conduction equation to calculate the thermal resistance defined by wall and 

heat generation in the wall. 

In order to include these effects in the 

calculation of heat transfer, it is 

necessary to specify the type of 

material, wall thickness and heat 

generation in the wall. Thus, the 

material is selected and the wall 

thickness is specified. Thermal 

resistance of wall is 


l
 , wherein   is 

thermal conductivity of the wall material 

and l  is wall thickness. Temperature 

condition respectively condition of heat 

flux density will be  

 

Tw 

outer surface 

(inner wall) 

inner surface 
(outer wall) 

THIN WALL 

cells of fluid 
or solid 
conducting 
wall l 

resp. qw 

w 

 

Fig.  5.3 The boundary condition on thin wall  
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specified on outside of the wall, as seen in Fig.  5.3.  According to the convention used in 

Fluent the wall will be called the inner wall. wT is constant temperature on the wall. It should 

be noted that for the thin wall a constant thermal conductivity is only possible to define. If 

required to use a non-constant thermal conductivity for a non-zero thickness, it is necessary 

to define a particular geometry of the wall and to mesh it. 

5.3.2. Boundary condition on two – sided thin wall  

 If the wall has on each side a liquid or a solid wall, this wall is called two-sided wall, 

and is illustrated schematically in Fig.  5.4. 

 

Tw2 

qw2 

Tw1 

qw1 

THIN WALL 

    wall       shadow wall 

w2 

cells of fluid or 
solid 
conducting wall 
 

cells of fluid or 
solid 
conducting wall 
 w1 

 

Fig.  5.4 The boundary condition on the wall with two surfaces [1]  

 

 

When the mesh is loaded with this type of wall in Fluent, we automatically create a "shadow" 

zone so that each side of the wall is the wall zone. The panel WALL emerges as Shadow 

Face Zone. Then you can define different thermal conditions in each zone named WALL and 

SHADOW WALL, or link (coupled) both zones.:  

 

 At linked wall zones the Coupled option in Thermal Conditions (this parameter appears in 

the Wall panel when the wall is two-sided) must be selected. No additional thermal 

boundary conditions are required, because the heat transfer is solved from the equations 

for neighboring cells. But one can define the type of material, thickness and heat 

generation for the calculation of the thermal resistance, as mentioned above. Heat 

resistance parameters are automatically set to "shadow" wall zone 
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 At different (unlinked) wall zones the different thermal conditions on each of them can be 

defined. You need to select Temperature or Heat Flux (Convection and Radiation are not 

possible for two - sided wall). Both unlinked walls may have a different roughness, and 

are mutually insulated. If it is necessary to specify a non-zero thickness of the walls for 

the unconnected zone, the thermal conditions are defined on the outer surface of non-

zero walls, as shown in Fig.  5.4, where 1wT  and 2wT  are temperatures ( 1wq and 2wq  are 

the heat flux densities) defined on either side, 1W  and 2W  are the thermal 

conductivities of on non-zero unconnected walls. The gap between the walls is not part of 

the model and it is for illustrative purposes only included in figure.   

5.4. Heat transfer coefficient 

The heat transfer coefficient on the wall is the quantity defined by the equation 

refwall TT

q


            [Wm-2K-1] (5.4.1 ) 

where q is the convective heat flow rate, wallT  is the wall temperature and  refT  is the 

reference temperature that should be representative for the problem. The reference 

temperature can be defined as: 

 constant value (Surface Heat Transfer Coefficient) is appropriately defined on the basis 

of the user's experience and is commonly used in engineering applications 

 temperature near the wall (Wall Heat Transfer Coefficient) resulting from numerical 

calculation. It depends on the boundary layer and in case of modeling also on cell size. 

Additionally, in the case of an irregular mesh, the size of the cells may change  this value 

significantly. 

Therefore, the heat transfer coefficient will be evaluated as Surface Heat Transfer 

Coefficient. The second variant is suitable for detailed investigation of heat transfer with 

very fine grid. 

5.5. Heat transfer at flow aroud plate 

Following an experience of modeling of heat transfer in different materials presented 

in chap. 3 the same geometry with more layers of material will be used. The middle layer will 

be again SOLID material (steel), but around the left and right side the air in a laminar regime 

will flow. 

Solve the temperature distribution due to conduction and convection in the layer of 

steel, the airflow will be on both sides. The physical model is given by the shape of the area 
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whose 2D scheme is shown in Fig.  5.5 and the dimensions and physical properties are in 

v Tab.  5.1 a Tab.  5.2. 

 

Tab.  5.1  Geometry of region 

thickness of region steell = airl  [m] 0.01 

height of region h  [m] 0.1 

 

Tab.  5.2  Physical properties of material (steel, air) at 300 K 

material steel air 

density   [kg∙m-3] 8030 1.225 

specific heat capacity pc  [J∙kg-1∙K-1] 502.48 1006.43 

thermal conductivity   [W∙m-1∙K-1] 16.27 1006.43 

viscosity   [kg∙m-1∙s-1]  1.7894∙10-5 

 

   

Fig.  5.5 Scheme of the plate in coordinate system and boundary conditions 

 

Boundary conditions 

Boundary conditions are defined on the left and right wall by temperature, eg. variant 

A from last excercise. At air inlet the velocity is defined and at outlet the static pressure is 
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specified. Due to the large dimensionality of the plate, the conditions of symmetry above and 

below are defined.  

Between the flowing gas and the plate there is the interface where the heat transfer is 

solved. In Fluent, this interface is defined by two zero-thickness surfaces. This method is 

used in the flow around thin plates (compared to the solved region), radiators, etc. These 

objects may not be caught by the grid, thus we save the amount of cell during meshing. This 

duplicate surface will always appear when transferring Meshing data or another geometry 

creation program to Fluent. The wall name remains and, in addition, creates its shadow. 

interface vs. interface shadow 

On these walls the boundary conditions do not have to be entered, the heat 

penetrates them, they are called "coupled". This case suits the task assignment. Another 

option is specification of the detailed boundary conditions on both sides. 

For all types of walls, the wall thickness is entered. If the wall is a boundary, its 

thickness is zero, if it is a real wall, a thickness (3 mm) can be entered. 

 

Tab.  5.3  Boundary conditions 

name type (Fluent) temperature 

[K] 

velocity 

[m∙s-1] 

pressure 

[Pa] 

wall left wall 323   

wall right wall 263   

inlet left air velocity inlet 323 0.1  

inlet right air velocity inlet 263 0.1  

outlet left air pressure outlet 323  0 

outlet right air pressure outlet 263  0 

wall top symmetry    

wall bottom symmetry    

interface left coupled    

interface left shadow coupled    

interface right coupled    

interface right shadow coupled    

 

Estimation of dimensionless flow parameters 

For calculation, formulas for flow around the plate were used, see chap. Chyba! 

Nenalezen zdroj odkazů.. The calculations are made for left flow around the plate, with the 

right flow around the plate, the estimates are slightly different because other physical 
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properties of the air are used due to temperature changes. 

Resultes 
   Reynolds number  Re= 629 

 Prandtl number Pr= 0.773856 
 Nusselt number Nu= 15.29314 
 Heat transfer coefficient  = 40.22 W.m-2.K-1 

tepla 
    

 

Matematical model 

In this task, there is a laminar flow, a laminar mathematical model is thus used. 

Velocity, pressure and temperature distribution is controlled by above differential equations. 

Laminarity criterion is the Reynolds number: 

629
10.7894.1

1.0.1.0.
Re

5




du
 

 

Creating geometry and mesh 

In environment Workbench the exact geometry is creating and covering by mesh,  

see Fig.  3.6. 

.  

Calculation results 

To illustrating, the possibilities of evaluation shall be indicated, i.e. filled isolines of 

temperature. It can be seen that heat permeates through the steel very well but there is no 

linear temperature distribution across all three area. In the vicinity of the material (steel plate) 

there is observed typical temperature distribution when air flows aroud the material. The 

temperature is not constat in limits, because the thickness of two outer layers should be 

greater, plus the velocity profile was not properly evolved from rectangular to steady 

parabolic profile, see Fig.  5.6. 
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Fig.  5.6 Distribution of temperature [K] in the steel plate, in surrounding air and at the 

evaluation plane in the middle of the region 

 

To calculate Nusselt number it is necessary to use the reference values. Reference 

temperature for the wall is determined by the left wall temperature and reference dimension 

is given by the length of the steel plate. First, determine an surface heat transfer coefficient 

according to equation: 

refs TT

q


  ( 5.5.1) 

 which is proportional to the heat flux and subsequently Nusselt number: 



 refd
Nu  ( 5.5.2) 

For the right wall the procedure is analogous, only the reference temperature values are 

different. 

                                Reference values  

             left area                              right area 

  

 

area of the plate wall 

air density 

length of the plate 

enthalpy 

size of the air area (Re) 

pressure 

temperature of the left wall 

air velocity at the inlet 
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viscosity of air 

specific heat 

 

Fig.  5.7 Definition of the reference values for calculating the parameters of heat transfer 

 

Fig. 5.8 shows the distribution of heat flow, heat transfer coefficient and Nusselt numbers at 

the air - steel and steel - air interfaces, where the opposite orientation of the heat flow at the 

interface. It is also necessary to evaluate these values in cells on the wall, not in the middle 

of the cells. 
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Fig.  5.8 Distribution of heat flux density,  surface heat transfer coefficient and surface 

Nusselt number along the interfaces calculated by Fluent for Tref=323 K and 263 K 

 

Heat transfer coefficient and Nusselt number depend of reference values, which is practically 

very difficult  to define because of dependency on measurement. In Fluent these values are 

the result and for further calculations they are not required. Nusselt number on the left 

interface takes two values, while on the left interface shadow the Nusselt number is equal to 

zero. So this wall does not make sense physically, but it's always necessary to verify if the 

Nusselt's number on the wall or wall_shadow is equal zero at the "coupled" condition. 

 Fluent software evaluates the above mentioned variables at every condition and the 

user must consider which values have the physical sense. CFX is treated in this sense 

better. 

 

 

 

Fig.  5.9 The distribution of enthalpy and entropy along the evaluating central plane 

 

For practical application, it is possible to obtain an average value of all the above 

parameters, but you need to consider accuracy of the weighted average. The weight is the 

area of mesh elements. Heat power per surface is determined uniquely, see Fig.  5.10. 

 



Conduction and convection at laminar flow  

68 

 

 

Fig.  5.10 The heat power per individual walls. 

 

Other parameters (Total Surface Heat Flux q, Surface Heat Transfer Coefficient and Nusselt 

number Nu) are determined by weighted average. 

 

Tab.  5.4  Averages (Area-Weighted Average) of heat flux, surface heat transfer coefficient and 

Nusselt number 

 

Differences between the estimation of the Nusselt number and the heat transfer coefficient 

against the Fluent calculation are due to the influence of the current acceleration and the 

short flow direction. 

If the averaged heat transfer coefficient for the left wall is determined, it is possible to 

simplify the area so, that it will not be dealt with the left part of the air flow. The boundary 

condition on the left side of the steel will be given by heat transfer coefficient and the 

 Surface Heat  

Transfer Coef.  

 [W∙m-2∙K-1] 

estimation 

Nu 

 

 

estimation 

Surface Heat 

Transfer Coef.  

[W∙m-2∙K-1] 

Fluent 

Nu 

 

 

Fluent 

Wall left air              0 0 

Interface left 5.14 19.5 6.00 24.8 

Interface left shadow               -6.00 0 

Wall right air              0 0 

Interface right shadow             5.5 20.9 6.00 24.8 

Interface right   -6.00 0 
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reference temperature, i.e. 323 K. The same boundary condition can be applied to the right 

wall. The result is a temperature distribution of practically constant value, i.e. 293 K, which is 

the same temperature value in the steel, as on Fig.  5.6. 

    

Fig.  5.11 Comparison of temperature [K] in a simplified geometry by boundary condition of 

heat transfer coefficient and in the geometry with flowing parts 
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6. Turbulence 

The flow of real fluids can be 

classified as laminar or turbulent 

flow. The flow is generally called 

turbulent if the variables exhibit 

chaotic fluctuations both in space 

and in time, see Fig.  6.1. Despite 

turbulence randomness the detailed 

studies indicate that turbulent flow 

comprises a spatial structures which 

are commonly called "Eddies" 

(turbulent eddies). 

 

Fig.  6.1  Fully developed turbulent flow - velocity as a 

function of time [13]  

Because in mechanical applications the turbulent structures can be characterized with 

dimensions of order of magnitude smaller than the characteristic dimensions of the region 

and changing in time of the order of ten-thousandths of a second, the detailed modeling of 

turbulent structures due to current hardware capabilities is very limited. Therefore, it is  effort 

to find so called turbulent models that could reasonably filter the small turbulent fluctuations 

and engineering applications could deal only with great vortices. The above described 

equations describe both laminar and turbulent flow and for their solutions so-called  „Direct 

solution methods“ can be used. For turbulence other approaches will be discussed, 

especially a time averaging method. 

Modeling of turbulence is still in state of research and development, which is constantly 

changing with advances in the mathematical, physical and technical fields. In numerical 

simulation of turbulent flow, there are three theoretically different approaches that result from 

simplifying modifications of the initial equations describing the flow [13]  

 DNS-Direct Numerical Simulation 

 LES-Large Eddy Simulation 

 RANS-Reynolds Averaged Navier-Stokes equations 
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u

u

u

u

 

DNS                        LES                     RANS 

Fig.  6.2 Methods of turbulence modeling [13]  

 

For most of the engineering tasks of turbulent flow, the most frequently used tool remains 

statistical turbulence models that are based on the Reynolds averaged method of turbulent 

flow vaariables and on the following procedure of time averaged balance equations (RANS). 

DNS is problematic because of the large 

capacity requirements of the computer for 

very fine grid. The number of grid cells can 

be estimated Np  Rel9 / 4. 

 
 

LES is based on the modeling of large 

vortices as spatially time-dependent 

objects that can be captured by the grid. 

Turbulent small-scale vortices are 

parameterized by so-called subgrid 

models. 
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RANS are statistical models of turbulence, 

based on the time averaged (Reynolds) 

method of turbulent variables and on the 

following time-averaging procedure of 

equilibrium equations. 

  

For example, in engineering applications it is possible to characterize turbulent structures 

with dimensions much smaller than the dimensions of the region and changing over time in 

the order of ten thousandths of a second, the modeling of all details of turbulent structures 

with respect to the current hardware possibilities is very limited. Therefore we will only deal 

with large vortices and, above all, with the method of time averaging. 

6.1. Reynolds  time averaging 

According to O. Reynolds (1895) instantaneous values of parameters describing 

turbulent flow can thus be decomposed into a time averaging part   and fluctuation 

component    (see Fig.  6.3), whichever is [6]  

   ( 6.1.1) 

where  0
1

0

  
T

T
d  resp. 

i
i

N


1
. For calculation with the time-averaged 

quantities there are certain rules, see Fig.  6.3, [6] . 

 

Fig.  6.3 Fluctuation ane time averaging part 

 

 

Osborn Reynolds 

 

Applying time averaging to the basic continuity equation and Navier-Stokes equations so 

called Reynolds equations are obtained. They are characterized in that they are formally 

similar to default equations, but solved variables are time-averaging. Due to nonlinearity of 

the Navier Stokes equations the additional member appears in them and corresponds to the 

stress and is defined as 
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jiijt uu    ( 6.1.2) 

The number of members is nine for various indexes and they are called Reynolds (turbulent) 

stresses that exist only in turbulent flow. They manifest themselves as a viscous deformation 

by stress effects on elementary fluid volume. Turbulent stresses are new, unknown variables 

in the equation system, therefore it is necessary to define them. The most commonly used 

method is a method of Bousinesq hypotheses about “eddy (vortex)” turbulent viscosity. This 

hypothesis assumes that (as in simplified two-dimensional laminar flow the shear stress 

Newtonian relationship is used) turbulent stresses and turbulent fluxes are proportional to the 

gradient of time averaging velocity, temperature, concentrations, etc. 

laminar flow             

molecular viscosity 

dy

duy
   

Boussinesq hypothese 

(analogy) 

 

turbulent flow                 

eddy turbulent viscosity 

y

u
uu

y

txt



  y

 

 

6.2. k-  two-equation model of turbulence 

In the heat exchangers tasks the most general equations expressing the conservation 

laws must be considered. Additionally non-constant density, which may be dependent on 

temperature and pressure, both for gases and liquids, can be supposed. You can specify an 

external volume forces. These equations can be expressed as in integral form, so in 

differential form. Differential form is common form in the theory of fluid mechanics, so that the 

equations will be presented in this form. But according to the previous chapter the equations 

will be solved by finite volume method based on integral form. As already noted, we assume 

turbulent flow, thus equations will be defined for time averaging quantities (pressure, 

velocity). As already mentioned, turbulent flow is assumed, ie the equations will be defined 

for the mean values (pressure, velocity) and will formally be analogous to the laminar 

equations: 

 continuity equation valid for time averaging variables 

zSu
t













 




 (6.2.1) 

 three Reynolds equations for the transfer of momentum for time averaging variables 

(Navier - Stokes equations modified by time averaging) 
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(6.2.2) 

 equation for turbulent kinetic energy  2

3

2

2

2

1
2

1
uuuk  , while it is possible to take 

into account the production of turbulent kinetic energy due to the tension and lift forces 

  






























Pkkuk
t k

t  (6.2.3) 

 equation for turbulent dissipation rate 
l

k
C

x

uu
D

j

ll
23

2

/








 , where l  is the 

turbulent length scale 

 
k
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
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


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
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

 (6.2.4) 

 in the model the number of constants determined empirically is also used 

To complement the Reynolds stresses ji uu 
 
are defined according Boussinesq hypotheses 

by relationship 

j

i
tji

x

u
uu




   ( 6.2.5)  

where turbulent (eddy) viscosity t  is expected as a function of length and velocity scale 

according to the Kolmogorov-Prandtl hypothesis: 


 

2k
Cult  .  ( 6.2.6) 

In some applications, the basic model can be extended to other equations focused on mass 

fractions of chemicals and compounds, etc.  

The standard k- model is suitable for high turbulent flow. For low Reynolds number 

so called RNG k-model is preferably used. In Fluent there are many other turbulent models, 

each of which is recommended for a different type of flow. Nevertheless, it is necessary to 

have a physical experiment to verify at least some flow parameters. All turbulent models near 

the walls utilize the wall functions to approximate the turbulent velocity profile near the wall. 
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6.3. Boundary conditions for k-  turbulent model 

6.3.1. Turbulent variables on boundary 

Great importance in connection with initial boundary condition is the seting of  

turbulent parameters in the form of values of turbulent kinetic energy and dissipation rate. 

A more accurate statement of these values is, of course, the profile obtained from empirical 

data or from empirical formulas. If the profile is not precisely known, you can enter a constant 

value estimated on the basis of experience. These turbulent quantities can be determined by 

means of quantities more easily identifiable such as turbulent intensity, ratio of turbulent and 

molecular viscosity, hydraulic diameter and turbulent length scale. The size of turbulent 

fluctuations usually is described by intensity of turbulence. Assuming isotropic turbulence  

(
2/

3

2/

2

2/

1 uuu  ) the relative turbulent intensity is explained as the ratio of rms 

fluctuation velocity component to the mean velocity in the same point of the flow usually 

expressed as a percentage. Usually only one directional component is measured: 

1

2

1

u

u
I

/

  ( 6.3.1) 

Ordinary turbulent flow is an anisotropic flow (heterogeneous in coordinate directions), but 

the anisotropy is small. The large differences are between the longitudinal and transverse 

components of motion. In general the turbulent intensity is specified by formula: 

uu

uu
I

jj

3

//

  ( 6.3.2) 

The difference between the velocity fluctuations in transverse direction  
/

2u  and 
/

3u
 
is usually 

very small. The value of turbulent intensity in several cases is approximately given in 

 
Tab. 6.1 : 

 

 

Tab. 6.1 

 I [%] 

windtunnel 0.05% 

turbulent flow generated by grate 1-5% 

wake 2-10% 

flow in the boundary layer and in the flow in the tube 5-20% 
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drowned stream 20% 

recirculation flow with low velocity u  100% 

 

Turbulent scale l  is  limited by the size of the region, because the turbulent vortices 

can not be larger than the dimension of region. Approximate value of the turbulent scale is 

determined from the relation Ll 07.0 , where L is the characteristic size or hydraulic 

diameter. Turbulent intensity and hydraulic diameter are available variables that can be 

specified as boundary conditions, the others are then converted by the following 

relationships.  

 

Tab. 6.2 

turbulent intensity 
uu

uu
I

jj

3

//

  

turbulent scale Ll 07.0  

rate of turbulent viscosity  


 t  lIu ..
2

3
  

turbulent kinetic energy  2

2

3
uk  nebo  2

2

3
Iuk   

dissipation rate 
122

3

4

3 
















 

tk
C

l

k
C  

 

Of course, turbulent energy and dissipation rate can also be defined directly. 

Depending on the complexity of the mathematical model other variables associated with heat 

transfer or other scalar variables can be defined. The value of turbulent intensity in the case 

of LES is defined by a random velocity fluctuations at the input. 

6.3.2. Variants of turbulent boundary conditions 

In any case, two boundary conditions must be entered because of number of 

equations for turbulent quantities (two). It is possible to select from the following 

combinations: 

 Turbulent kinetic energy + turbulent dissipation 

 Turbulent intensity + turbulent length scale 

 Turbulent intensity + viscosity rate 
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 Turbulent intensity + hydraulic diameter 

The most commonly used variant is the last variant because the turbulent values can be 

qualified. If another measurement is available, another variant can be used.  

6.3.3. Boundary conditions 

On flow boundaries the conditions are the same as the boundary conditions for 

laminar flow and, in addition, turbulent conditions are added to each variants, with the 

exception of the reverse flow conditions, otherwise they are counted, see Tab. 6.3.  

Tab. 6.3 

 Type (Fluent) Variable Unit 

INLET VELOCITY INLET velocity u  

turbulent intensity I 

hydraulic diameter dh 

[ms-1] 

[%] 

[m] 

 MASS FLOW 

RATE   
mass flow rate mQ  

turbulent intensity I 

hydraulic diameter dh 

[kgs-1] 

[%] 

[m] 

 PRESSURE 

INLET 

total pressure 

2

2

1
upppp statdynstattot 

 

turbulent intensity I 

hydraulic diameter dh 

[Pa] 

 

 

[%] 

[m] 

OUTLET OUTFLOW steady flow condition  

 0,0 









n

p

n

u

 

turbulent intensity I 

hydraulic diameter dh 

 

 

 

[%] 

[m] 

 PRESSURE 

OUTLET 

static pressure statp
 

(0 at outlet into atmosphere) 

turbulent intensity I 

hydraulic diameter dh 

[Pa] 

 

[%] 

[m] 

 MASS FLOW 

RATE   
mass flow rate mQ  

turbulent intensity I 

hydraulic diameter dh 

[kgs-1] 

[%] 

[m] 
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WALL WALL 0u  default (moving wall – 

define velocity) 

roughness for turbulent flow 

 

 WALL shear stress or fluid sticks on the 

wall (no slip) 

roughness for turbulent flow   

 

 

6.4. Wall function, possibility of more accurate calculation 

Modeling of the flow near the wall affects the accuracy of numerical solutions in the 

whole area. Near the wall the solved variables are rapidly changing, significantly the transfer 

of momentum and scalar quantities is here applied. Turbulence is suppressed close to the 

wall. However, in the outer part of boundary layer there is a significant production of turbulent 

kinetic energy due to Reynolds stresses and the mean velocity gradient. Numerous 

experiments have shown that the area near the wall, so called boundary layer can be 

divided into multiple parts. Immediately near the wall the viscous (laminar) sublayer is 

placed, the flow is here nearly laminar and molecular viscosity has a dominant influence on 

the transfer of momentum, heat and mass. The outer part of the boundary layer becomes 

fully turbulent layer and turbulence plays a dominant role here. Between laminar and fully 

turbulent layer the transition layer occurs, in which the effects of molecular viscosity and 

turbulence apply equally. Distribution of the boundary layer is shown in Fig.  6.4. 



Turbulence  

79 

 

 

Fig.  6.4 Distribution of layer near the wall - in linear and logarithmic coordinates 

 

Flow near the wall can be modeled in two approaches:  

 

 using of wall functions (coarsen mesh) by which the region between laminar sublayer 

and transition layer is spanning, where the molecular and turbulent viscosity appears, ie 

the area between the wall and the area of fully developed turbulent flow 

 two layer modeling for finer mesh (Enhanced wall teratment) includes the viscous 

sublayer in connection with the finer mesh near the wall.  

The essence of both approaches is illustrated on Fig.  6.5. 

Standart wall 
function 

 
 

Nonequilibrium 
wall funkction 

 

Wall function 
 

Two layer  modeling  

MODELING OF FLUID 

FLOW NEAR THE WALL 

 (FLUENT) 
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Fig.  6.5 Two approaches to the modeling of flow near the wall in Fluent 

 

Theory of wall functions by Launder a Spalding 

Wall functions based on Launder and Spalding theory are widely used mainly in 

industrial applications. In turbulent flow the boundary layer consists of a viscous sublayer and 

the logarithmic law for time averaging velocity in the turbulent field in a simplified two-

dimensional case: 

 
 yEu .ln


1
 ( 6.4.1) 

Dimensionless variables in this equation are defined as: 

u

u
u 


                 



  yu
y 

                   





wu   ( 6.4.2) 

where 

  = von Kármán constant (=0.42) 

 E = empirical constant (=9.81) 

 u  = time averaging flow velocity in point P 

 u = friction velocity 

 y = difference of point P from the wall in normal direction 

  = dynamic viscosityof fluid 

P 

viscose and transition sublayer 

full developed turbulence 

P 

using of logarithmic  

wall function          

method of modeling  

near the wall 

stěna 

fluid flow 

y 
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Friction velocity u  is determined by shear stress defined as Reynolds stress.  

Wall functions are a set of empirical relationships and functions that allow you to "link" 

variable solved in a cell near the wall with the corresponding value on the wall. Wall functions 

include logarithmic law for mean velocity and temperature and equations for turbulent 

quantities near the wall.  

6.5. Influence of mesh quality on the choice of wall functions for 
various models of turbulence 

The dimensionless distance of the center of cells adjacent to the wall from these walls is 

determining if the choice of the logarithmic wall function is correct or a second approach is to 

be selected. 

• logarithmic law is valid for 6030* y  

• enhandced wall treatment is valid for 54* y , ideally at least 10 cells should be in 

the laminar sublayer 

• Spalart Allmaras model uses wall logarithmic function assuming a very fine grid 

( 1* y ) or grid for which it is 30* y .  

• Large Eddy Simulation model uses a logarithmic wall function for very fine grid (oder 

of 1* y ) 

Determination of dimensionless distance 
*y  is possible up in Fluent, so mesh 

refinement is carried out to find the command ADAPT. Boundary layer of velocity and 

temperature profile will then be better detected and will lead to a more accurate calculation of 

heat transfer between the wall and the fluid. For illustration, in examples using adapted and 

coarse grid the differences in heat flux and other variables will be also evaluated. 

6.6. Choice of turbulent model for more accurate calculation 

The basic problem of the turbulent shear flow calculation lies in the presence of 

unknown Reynolds stresses in the equations describing the motion of fluid medium, so that 

the system of equations is not closed as in the case of laminar flow. Set of additional 

equations and empirical relationships, which together with the equations of motion forms a 

solvable system of equations, is called a model of turbulence. Selection of turbulent model 

depends on the type of flow: 

 level of turbulence, which is determined by the Reynolds number. At high Reynolds 

number (105 in the order) it is developed turbulent flow and the standard k- model is 
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used. At lower Reynolds numbers it will be appropriate another variant, for example. 

RNG k- model or k- model. 

 simple flow vs. swirl flow in the field. At the existence of a secondary swirl flow it is 

again advisable to use RNG k- model or k- model.  

 calculation of heat transfer. In the tasks of heat transfer k- model is useful.   

 computational speed. The fastest and most stable calculation is by using the standard 

k- model. 

 

Turbulence models can be divided into several groups. For simplicity there are the most 

commonly used models, whose selection is determined by the Reynolds number and speed 

of calculation.  

 

Tab.  6.1 

k- model                      high Re number 

RNG k-  model           low Re number 

k-  available model  

k- model                     low Re number + heat transfer 

 

6.7. Flow around the tube in transverse direction 

6.7.1. Flow around the tube - theory, measurement  

Flow around the tube and subsequently flow through tubular bundle is one of the 

basic fluid flow and that is a typical problem for a range of heat exchangers. In the opening 

chapters these issue will be discussed on a steady flow around one tube with heat transfer 

and then on steady flow through tubular bundle. 

When solving tasks flow around the tube it can be evaluated in addition to basic 

physical quantities such as velocity, pressure and their statistical processing also Reynolds 

number, Strouhal number (frequency of the largest floating vortical structures), resistance 

coefficients, location of the boundary layer separation, or the length of the wake [17] . 

Effect of actual flow field of viscous fluid flow around the body depends on the value 

of Reynolds number 


hud
Re . The basic distribution of flow character around the tube at 

different Reynolds numbers was established experimentally by Roshko [9]. He divided the 

flow around the tube, depending on the Reynolds number in the following areas: 
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Tab. 6.4 

40 < Re < 150      stabil area 

150 < Re < 300      transient area 

300 < Re < 200 000      instabil area 

 

More detailed separation is yet problematic due to the character of turbulence. Further 

examination of the parameters is given in the literature.  

 Strouhal number specifies the flow dynamics, ie. the frequency of vortex shedding   

u

df hSh  ( 6.7.1) 

The value 20.Sh   permits for a given geometry (diameter) and for the physical properties 

of the flowing medium (viscosity) to determine the frequency of vortex shedding. It follows 

that the solution is time-dependent, i.e. at each time step of period given by relationship 

f
T

1
  the flow field is different. This is in terms of numerical solution and also in terms 

global determining of heat transfer disadvantageous. We also can not forget the time 

dependence, since the stationary task does not converge, but converges at each time step, 

which is eg. hundred-th of period. But there is a possibility to find a solution statistically 

averaged, and thereby estimate the basic parameters of heat transfer. This is a complicated 

process, but the only one possible. Furthermore, this procedure corresponds to experimental 

measurements. 

  Measurement of such time-dependent processes can be carried out by series of 

measuring instruments whose outputs can be recorded as a time series into a computer. 

They include hot-wire anemometer CTA, Laser - Doppler anemometer LDA, Particle Image 

Velocimetry PIV etc. In this case to measuring the air flow field behind the tube the device 

Mini-CTA was used. To determine the parameters of the flow field the measurements were 

taken at certain points behind the tube (Fig.  6.6), the profile of the mean velocity and 

turbulence intensity was drawn (Fig.  6.7) and further the vortex shedding frequency from a 

time series with the FFT method was evaluated (Fig.  6.8). The frequency of vortex shedding 

is 105f  Hz. 
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Scheme of measurement  [17]  

Physical experiment: 

tube diameter:    20 mm 

air temperature:   22 oC 

air density:               1.225 kg∙m-3 

viscosity of the air:    1.7894.10-5 Pa∙s 

The flow parameters at the inlet into the 

measuring part of the tunnel: 

air velocity:                   10 m∙s-1 

intensity of turbulence:     1.5 % 

Fig.  6.6 Scheme of the measuring section and flow parameters 

 

 
Profil střední rychlosti 40 mm za válcem

0

5

10

15

20

0 20 40 60

l [mm]

v
 [

m
/s

]

Profil intenzity turbulence 40 mm za válcem

0

20

40

60

80

0 20 40 60

l [mm]

i 
[%

]

 

Fig.  6.7 Distribution of the mean velocity and turbulent intensity in cross-section 40 

mm behind the tube [17]  
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Fig.  6.8 Time velocity record measured at a point 40 mm behind the tube and 10 mm 

next the tube axis and the power spectral density [17]  



Turbulence  

85 

 

6.7.2. Flow around the tube - numerical solution  

For an easy testing the task in longitudinal section through the center of the 

dimension was solved. To obtain satisfactory precision the symmetrical mesh along the axis 

of symmetry and most significantly compressed to the tube vall has been formed. This is a 

necessary condition not only for flow around obstacles, but also for heat transfer, see Fig.  

6.9. 

 

  

Fig.  6.9 Creating geometry and mesh of area   [17]  

 

Stationary boundary conditions were set according to the physical experiment, see 

Tab. 6.5. 

Tab. 6.5 

diameter of the inserted tube [mm] 20 

air velocity [m∙s-1] 10 

ambient air temperature [oC] 22 

air density [kg∙m-3] 1.225 

air viscosity [Pa∙s] 1.7894.10-5 

intensity of turbulence at inlet into measuring part of the tunnel [%] 1.5 

 

The series of mathematical models to get high-quality results for a confrontation with 

experiment was tested. To illustrate here the RNG k-ε turbulent model was chosen. The 

results were evaluated by means of instantaneous and time averaging values, see Fig.  6.10. 

Using better quality of numerical models and modeling in 3D geometry, the numerical 

calculation is even more complicated as the flow exhibits swirl structures even in the 

direction of the axis of the pipe, see Fig.  6.11. When evaluating the power spectral density, 

however, the result is much more consistent with the experiment (Fig.  6.12). 
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Instantaneous values of the velocity vector magnitude 

 

Time averaging values of the velocity vector magnitude 

 

Fig.  6.10 Velocity magnitude [17]  

 

  Fig.  6.11 3D model – velocity vector magnitude in the axis, detail and space view [17]  
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Fig.  6.12 Comparison of experiment and model  [17]  

6.7.3. Flow around two tubes 

At flow around two or more tubes the flow and heat transfer depends on the tube 

diameter, on the flow velocity and on distance between the tubes. Modeling will evaluate 

these proposals and new optimal possibilities in the design will arise. 

For this task the physical experiment was at first prepared. All preparations and settings 

were the same as for the task of flow around one tube in the previous chapter. Only one 

difference to the previous task was the fact that in the measuring section a second cylinder of 

the same diameter, i.e. D = 20 mm, has been inserted. Spacing between the cylinders was 

set to 2D i.e. 40 mm. 

 

 

Fig.  6.13 Schematic view of the modeled the task [17]  
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At a distance of x/D = 2,5 the velocity profile and the turbulent intensity under  one 

cylinder and two cylinders was again measured, see Fig.  6.14 and Fig.  6.15, both for the 

purpose of mutual comparison and for comparison with the mathematical model. 
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Fig.  6.14 Profile of mean velocity [17]  
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Fig.  6.15 Turbulence intensity profile [17]  

 

For illustrative purposes Fig.  6.16 shows the velocity and the vortex shedding behind 

second tube in numerical testing. 
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Fig.  6.16 Visual comparison of the size of the instantaneous velocity magnitude in the flow 

around one and two tubes [17]  

 

The question remains whether the dominant frequency at which a transfer of much 

energy will be changed. The answer to this question is in Fig.  6.17, where the comparison of 

power spectra obtained from measurement at a distance of X = [25; 10] behind one cylinder 

and second cylinder in the pair. 

a)   CTA 

 

x/D=1,25  

under one 

cylinder 

 

 b)  CTA  

 

x/D=1,25  

behind second 

cylinder in the 

pair 

 

Fig.  6.17 Comparison of the power spectrum measurement by CTA [17]  
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The comparison shows a marked change in the first frequency at which the most energy 

transfer occurs. Its value is lower, 75 Hz. In terms of design impact, it is more dangerous 

than higher own frequencies. 

 The same information was obtained from numerical experiment. 
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7. Conduction and convection in turbulent flow 

7.1. Energy equation at turbulent flow 

The energy equation is analogous to the energy equation for laminar flow, but it is 

defined for time-averaged energy, temperature, while velocity and stress are also time-

averaged: 

      htt SuTEuE
t



























 

(7.1.1) 

t turbulent thermal conductivity is proportional to turbulent viscosity. 

7.2. Mathematical model of turbulent flow with convection and 
conduction 

When dealing with heat transfer by conduction and convection in turbulent flow, which 

is the vast majority of engineering applications, the following system of equations will be 

used:  

 continuity equation for time averaging state values 

 momentum equations – in turbulent flow Reynolds equations for time averaging 

values of pressure and velocities 

 equation for turbulent kinetic energy and turbulent dissipation 

 energy equation for time averaging state variables 

The solution is complemented by boundary conditions. The accuracy of the solution does not 

depend on the shape of the area being solved, only on the quality of the grid created. 

Advantageously, simplicity is used in symmetrical and axially symmetrical regions. The 

following more or less simple examples of typical energy applications will demonstrate 

benefits of numerical finite volume method. 

7.3. Boundary conditions 

The boundary conditions for turbulent flow are supplemented by heat transfer conditions. 

The following table lists the most commonly used boundary conditions. 
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Tab. 7.1 

 Type (Fluent) Variable Unit 

INLET VELOCITY INLET velocity u  

turbulent intensity I 

hydraulic diameter dh 

temperature T 

[ms-1] 

[%] 

[m] 

[K] 

 MASS FLOW 

RATE   
mass flow rate mQ  

turbulent intensity I 

hydraulic diameter dh 

temperature T 

[kgs-1] 

[%] 

[m] 

[K] 

 PRESSURE 

INLET 

total pressure 

2

2

1
upppp statdynstattot 

 

turbulent intensity I 

hydraulic diameter dh 

temperature T 

[Pa] 

 

 

[%] 

[m] 

[K] 

OUTLET OUTFLOW steady flow condition  

 0,0,0 














n

T

n

p

n

u

 

turbulent intensity I 

hydraulic diameter dh 

temperature gradient 0




n

T
 

 

 

 

[%] 

[m] 

 PRESSURE 

OUTLET 

static pressure statp
 

(0 at outlet into atmosphere) 

turbulent intensity I 

hydraulic diameter dh 

temperature T 

[Pa] 

 

[%] 

[m] 

[K] 

 MASS FLOW 

RATE   
mass flow rate mQ  

turbulent intensity I 

hydraulic diameter dh 

temperature T 

[kgs-1] 

[%] 

[m] 

[K] 

WALL WALL 0u  default (moving wall – 

define velocity) 
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roughness for turbulent flow  

temperature T 
constant heat flux density q 
zero heat flux density (insulation) 
q=0,  

convective heat transfer , Tref 

radiation 

 WALL shear stress or fluid sticks on the 

wall (no slip) 

roughness for turbulent flow 

temperature T 
constant heat flux density q 
zero heat flux density (insulation) 
q=0,  

convective heat transfer , Tref 

radiation  

 

 

7.4. Heat transfer at turbulent flow around the plate 

Following the experience of modeling of heat transfer at laminar flow around the plate 

the same geometry with the middle layer as SOLID material (steel), but with the left and right 

layer as FLUID will be used. There will be air and water flow in turbulent regime. 

Solve temperature distribution due to conduction and convection in a layer of steel, 

where on left side the water flows and on right side the air flows. The physical model is given 

by the shape of the region whose diagram is shown in 2D in Fig.  7.1 and the dimensions 

and physical properties in the tables Tab. 7.2, Tab. 7.3. 
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Fig.  7.1 Scheme of dimensional plate in coordinate system and boundary conditions 

 

Tab. 7.2  Geometry of region 

thickness of region steell = airl  [m] 0.01 

height of region h  [m] 1 

 

Tab. 7.3 Physical properties of material (steel, water, air) at 300 K  

material steel air water 

density   [kg∙m-3] 8030 1.225 998.2 

specific heat capacity pc  [J∙kg-1∙K-1] 502.48 1006.43 4182 

thermal conductivity   [W∙m-1∙K-1] 16.27 1006.43 0.6 

viscosity   [kg∙m-1∙s-1]  1.7894.10-05 0.001003 

 

Boundary conditions 

Boundary conditions are defined on the left and right wall by temperature. At air and 

water inlet the velocity is defined and at the outlet the static pressure and turbulent parmeters  

are specified. Due to the large dimensionality of the plate, the conditions of symmetry above 

and below of the plate are defined. 
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Tab.  7.1 Boundary conditions 

name type (Fluent) T [K] u [m∙s-1] p [Pa] dh [m] I[%] 

wall left water wall 323     

wall right air wall 263     

inlet water velocity inlet 323 1  1 1 

inlet air velocity inlet 263 10  1 1 

outlet left water pressure outlet 323  0 1 1 

outlet right air pressure outlet 263  0 1 1 

wall top wall 293     

wall bottom wall 293     

interface left coupled      

interface left shadow coupled      

interface right coupled      

interface right shadow coupled      

 

Estimation of dimensionless flow parameters 

For the calculation, formulas for turbulent flow around the plate are used, see chap. 

1.4. Calculations are made for the water flow around the plate from the left. With the air flow 

around the plate from the right, the estimates vary due to the change in the physical 

properties of the flow medium and temperature. 

Results – water (left) 
 

Results – air (right)   

Reynolds number Re= 1000000 Reynolds number Re= 629327 

Prandtl number Pr= 6.957454 Prandtl number Pr= 0.77429752 

Nusselt number Nu= 4878 Nusselt number Nu= 1620.05179 
Heat transfer 
coefficient = 2927 

Heat transfer 
coefficient = 42.61 

 

Mathematical model 

In this task, there is a turbulent flow. Velocity, pressure and temperature distribution is 

controlled by above differential equations. Turbulent criterion is the Reynolds number: 

629327
1.46073.10

1.10
Re

05-




du
air  

0000001
10

1.1
Re

06-




du
water  

The value of Reynolds number is higher than the limit, flow is turbulent or rather the transition 

from laminarity to turbulence. Therefore, a turbulent model was chosen, that is more suitable 

for tasks with a low Reynolds number and for a heat transfer, ie k- model. 
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Creating geometry and mesh 

In environment Workbench the exact geometry is creating and covering by mesh,  

see Fig.  3.6. 

 

Results 

The evaluation options are the same as in the previous examples, so only some 

important variables such as the temperature and profiles of the quantities characterizing the 

transfer of heat through the steel wall will be shown. In addition, turbulent quantities and 

turbulent physical properties will be evaluated. 

 Fig.  7.2 shows the temperature distribution in the air, steel and water layers. It can be 

seen that the air again acts as a good insulator. 

 

  
 

Fig.  7.2 Temperature distribution [K] in the air, steel and water layer and in detail and in the 

evaluation plane (right part) 

 

Left region – water  Right region – air  
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Fig.  7.3 Distribution of total surface heat flux, surface heat transfer coefficient and Nusselt 

number along the interfaces, Tref=323 K and 263 K, dh=1 m 

  

Other parameters (Total Heat Transfer Rate P,  Total Surface Heat Flux, Surface Heat 
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Transfer Coefficient α and Nusselt number Nu) are also determined by the area weighted 

average. 

 

 

Fig.  7.4 Heat power 

 

For simplified practical applications, it will make sense to evaluate the average values 

of these values and compare them with estimations, Tab. 7.4. 

Tab. 7.4 

Average values water  

left 

estim. 

air 

right 

estim. 

water  

left 

Fluent 

air 

right 

Fluent 

Inlet velocity [ms-1]  1 10 1 10 

Total Heat Transfer Rate [W]    3130 3130 

Surface Heat Transfer Coef. [W∙m-2∙K-1] 2927 42 4507 53 

Nusselt number [1] 4878 1620 7512 2228 

Different values are due to the constant boundary conditions of the flow and thus due to the 

acceleration of the flow at the inlet to the area. 

7.5. Flow around the tube with heat transfer (without flow inside)  

The above defined problem of air flow around the tube will now be complemented by 

solving of heat transfer. Thus the geometry is identical to a previous task. It is also defined 
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the air temperature, the wall temperature. The flow inside the tube is not for reasons of 

simplicity expected, but it is solvable, as will be seen in subsequent chapters. 

This element is the cornerstone of a wide range of tubular heat exchangers, therefore 

partly empirical theories have been developed and which allow to define the relevant flow 

parameters such as: 

Reynolds number is defined as: 



duref
Re  ( 7.5.1) 

Prandtl number is the ratio of the viscous and thermal diffusion and is dependent on 

the material properties of the fluid.  



 pc
Pr  ( 7.5.2) 

Nusselt number is given by formula : 

laminar, transient and turbulent 

flow around the tube in cross 

direction 

 

38,0

1 PrReNu ěC
C       

Re                               C1                 C2  
0,4 ÷ 4                         0,989            0,330  
4 ÷ 40                          0,911            0,385  
40 ÷ 4 000                   0,683            0,466  
4 000 ÷ 40 000            0,193            0,618  
40 000 ÷ 400 000        0,0266          0,805                        

 

Solve turbulent flow around the heating tube, evaluate the influence of grid and turbulent 

model on results that compare with empirical estimates. Area is defined by 2D scheme in  

Fig.  7.5 

 

  

Fig.  7.5 Definition of the region when air flows around tube with heat transfer 

 

Geometrical and physical parameters of the tube and of the neighborhood with the flowing 

air are given in tables. 

 

uref 

Tref 

d 

h 

L 

D 

Ts 
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Tab. 7.5 Geometrical and physical parameters of the tube  

diameter dref= 0.0127 m length h= 0.094 m 

area of the tube wall S= 0.00375 m2 wall temperature Ts= 128.4 oC 

 

Tab. 7.6 Geometrical and physical parameters of the neighborhood with a air stream 

neighborhood        

height D= 0.06 m length L= 0.1 m 

Air properties       

density  1.23 kg∙m-3 temperature Tref= 26.2 oC 

velocity vref= 10 m∙s-1 viscosity dyn.  1.78E-05 Pa∙s 

viscosity 

kinematic 

 1.59E-05 m2∙s-1 thermal 

conductivity 

 0.0242 W∙m-1∙K-1 

specific heat cp= 1066.6 J∙kg-1∙K-1 thermal 

conductivity 

a 2.25E-05 m2∙s-1 

 

From given parameters you can calculate the above parameters of flow and heat transfer. 

Estimation of heat transfer coefficient is then determined from Nusselt number 


d
Nu by 

the relationship 
d




Nu
 . 

Tab. 7.7  

Reynolds number Re= 7992 

Prandtl number Pr= 0.68 

Nusselt number Nu= 38.86 

Surface heat transfer coefficient  = 80.47 W∙m-2∙K-1 

 

For the numerical solution 2D model is selected and the results will be compared with the 

calculations for typical tasks such as the dimensionless parameter Reynolds, Prandtl and 

Nusselt number and heat transfer coefficient. 

 

Mathematical model 

In this task we suppose turbulent flow and a mathematical model k- is used. The 

criterion of turbulence is Reynolds number, which is determined by the velocity of the air, its 

viscosity and cylinder diameter:  
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Reynolds number Re= 7992  turbulent flow 

Reynolds number is higher, but it is a transition from laminarity to turbulence.  

 

Creating a geometry and mesh 

In an environment Workbanch the 

exact geometry is created, but with the 

regard to the further use of modeling 

heat transfer with the flow in the pipe 

there is made simpler grid, see Fig.  7.6. 

 

Fig.  7.6 Grid for 2D geometry of the flow 

around the tube 

Results 

Evaluated options are the same as in the previous examples, therefore, only some 

significant variables are shown. To calculate the Nusselt number and the heat transfer 

coefficient it is necessary to update the reference values, which are basic for calculating the 

heat transfer coefficient and Nusselt number. Estimation of surface heat transfer coefficient is 

determined again by equation: 

refs TT

q


  ( 7.5.3) 

 and subsequently Nusselt number 



 refd
Nu  ( 7.5.4) 

The reference values are defined as follows: 
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Area of the tube wall 

Density of air 

Depthe of the tube  

Enthalpy 

Tube diameter (Re) 

Pressure 

Temperature of air at inlet 

Velocity of air at inlet 

Viscosity of air 

Ratio of specific heats 

Fig.  7.7 Definition of reference values for calculating the parameters of heat transfer 

 

 

Fig.  7.8 Distribution of static pressure [Pa] 

 

With these parameters it is possible to evaluate the Nusselt number and the heat transfer 

coefficient on the tube wall, or determine their mean value. 
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Fig.  7.9 The total surface heat flux and surface heat transfer coefficient along the perimeter 

of the tube wall, an average value=99.33, Tref=299.35 K, dh=0.0127 m 

 

 

Fig.  7.10 Nusselt number along the perimeter of the tube wall, whose average value is Nu= 

44.37, Tref=299.35 K, dh=0.0127 m 

 

The whole numerical calculation was solved earlier by RNG k- model and repeated on a 

much finer mesh around tube. Mesh can also be done in Fluent using command ADAPT. It 

was then recognized better boundary layer of velocity and temperature profile and it caused 

substantial heat transfer between the wall and the fluid. Therefore, the different values were 

found due to coarsen mesh, where the heat from the wall almost did not spread to the 
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surrounding area. In Fig.  7.11 a Fig.  7.12 you can compare differences in temperature 

distribution in the area behind the tube. Third variant was solved on coarsen mesh using k- 

turbulent model. 

  

 

Fig.  7.11 Static temperature distribution on the coarsen mesh 

 

 

Fig.  7.12 Static temperature distribution on the fine mesh 

 

Another important parameter is the pressure loss in the flow direction using PLOT X-Y 

evaluation. 
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Fig.  7.13 Static pressure distribution in flow direction 

 

The pressure drop from the numerical calculation is determined as difference of the 

averaged static pressure on the inlet area and the outlet area. From Fig.  7.13 it is seen that 

in the area around the tube there are significant changes of pressure, but the pressure loss is 

given by the above definition. It is obvious that in case of close placement of tubes in a row it 

will be necessary the pressure changes to model. 

 7.1107.11  outletinlet ppp  Pa 

Comparison between the estimation and the numerical solution obtained by calculating on 

coarsen and fine mesh is evaluated in the following table. 

Tab. 7.8 

 estimation coarsen 

mesh    

k- 

Fine 

mesh   

k- 

Coarsen 

mesh   

k-  

Surface heat transfer coefficient [Wm-2K-1] 
80.47 

89.48 142.26 121.1 

Nusselt number [1] 38.86 46.96 74.66 63.30 

Thermal power [W] 30.84 34.4 54.7 46.11 

Pressure loss [Pa]  11.4 7.7 12.8 
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7.6. Flow around the tube with the heat transfer (with the flow 
inside) 

 While simplifying assumption by the previous task the fluid is not flowing through the 

tube and it is assumed only that the tube wall is heated to a constant temperature, it makes 

no sense to deal with spatial modeling, as in each section perpendicular to the tube axis the 

distribution of flowing and temperature field is the same. When fluid passes through a long 

tube, then there is observable a temperature change along the pipe. In this case, flow and 

temperature field especially in sections perpendicular to the axis of the tube varies. 

Therefore, the task was solved with a flowing fluid inside the tube as a 3D spatial problem. It 

can be seen that for pipe lengths on the order of 1 meter the temperature remained almost is 

unchanged, the result will not be displayed. In the longer tubes arranged for example in a 

spiral, the 3D calculation has sense. 

7.7. Flow across the tube bundle with heat transfer  

The heat transfer at cross flow through the tube bundle has a number of industrial 

applications, such as steam generation in the boiler or cooling air-conditioning units. The 

geometrical configuration is in Fig.  7.14. 

 

Fig.  7.14 Arrangement of the tubes at cross flow. 

 

The arrangement may be of two kinds, row arrangement and cross arrangement [2] , [3] . 

When looking in 2D the arrangement is structured as follows: 
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row arrangement      cross arrangement 

Fig.  7.15 Schematic representation of the arrangement of the tubes in cross flow. 

 

Heat transfer coefficient in this case is associated with the location in the tubular system. 

Coefficient for the first tube is approximately equal to the coefficient defined for one tube in 

the cross flow, while coefficients of the tubes inside the tubular system vary and depend on 

the type of arrangement. In most configurations, the heat transfer conditions have stabilized 

and small changes appear in the heat transfer coefficient for the tube in the fourth to fifth row. 

When a larger number of rows (NL is greater than 10), it is possible to define an average 

coefficient: 

 

laminar, transient and 

turbulent flow across the tube 

bundle, NL is a number of tube 

column 

m

DC max,1D ReNu   pro ,10LN    40000Re2000 max,  m

D  

70.Pr  , constants C1 and m  are given in table 

SL – horizontal distance of tubes, ST – vertical distance 

of tubes 

 

Constants for determining the Nusselt number when flowing across the tube bundle 
 

tubes in row ST/D= 1.25 ST/D= 1.50 ST/D= 2.00 ST/D= 3.00 

SL/D C1 m C1 m C1 m C1 m 

1.25 0.348 0.592 0.275 0.608 0.100 0.704 0.063 0.752 

1.50 0.367 0.586 0.250 0.620 0.101 0.702 0.068 0.744 

2.00 0.418 0.570 0.299 0.602 0.229 0.632 0.198 0.648 

3.00 0.290 0.601 0.357 0.584 0.374 0.581 0.286 0.608 
 

 

tubes in 
cross ST/D= 1.25 ST/D= 1.50 ST/D= 2.00 ST/D= 3.00 

SL/D C1 m C1 m C1 m C1 m 

1.000 
  

0.497 0.558 
    1.125 

    
0.478 0.565 0.518 0.560 

1.250 0.518 0.556 0.505 0.554 0.519 0.556 0.522 0.562 

1.500 0.451 0.568 0.460 0.562 0.452 0.568 0.488 0.568 

ST 

ST 

SL 

SL 

d 

A1 

d 

A1 
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2.000 0.404 0.572 0.416 0.568 0.482 0.556 0.449 0.570 

3.000 0.310 0.592 0.356 0.580 0.448 0.562 0.482 0.574 
           ( 7.7.1) 

 

During the flow through the tubular system there is a significant change in temperature. In 

this case the wall temperature is reducing and thus the temperature difference is reducing  

too.  The thermal power would be highly overestimated by using the temperature difference 

refs TTT Δ . Therefore so called logarithmic temperature difference  is used: 

   
 
 





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










Os

Is

OsIs
lm

TT

TT

TTTT
T

ln

Δ  
( 7.7.2) 

where OI TT ,  is inlet and outlet temperature of the flowing medium. The outlet temperature 

which is required for determination lmTΔ may be estimated from follows:   
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where N  is the total number of tubes in the system and TN  is the number of tubes in a 

vertical direction. Thus lmTΔ  is known value and thermal power per unit length of the tube 

can be calculated from the relationship  

 lmTdNP    ( 7.7.3) 

 An important parameter is the pressure loss, which is defined by the Bernoulli 

equation and depends on the loss coefficient corresponding to system of tubes and is 

determined empirically. 











2

2

maxu
Np L


  resp. 










42

28

d

Q
Np m

L


  ( 7.7.4) 

Loss coefficient is specific for a different arrangement of tubes. When arranging the tubes in 

a row the loss coefficient is defined as follows: 





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( 7.7.5) 

At cross tubes arrangement it is similarly defined: 
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( 7.7.6) 

Coefficient   depends on the Reynolds number. For values higher than 40 000 it is equal to 

one and for lower values it is estimated from empirical measurements shown in Fig.  7.16. 

 

 

raw tubes arrangement           cross tubes arrangement 

Fig.  7.16 Values of the coefficient   depending on the number Re [3]  

 

 As you can see, the solution of flow across a such tubular system is dependent on  

number of empirically determined coefficients, the specification is not the goal of this course. 

In Fluent the pressure gradient is acquired directly. It is also possible to re-determine the loss 

coefficient which can be the result of calculation. The next chapter outlines the possibility of 

solving of flow across the tubular system with heat transfer for simplicity in 2D by numerical 

way.  

7.7.1. The arrangement of the tube bundle in a row  

According to the above scheme a tube bundle was solved. The number of tubes is 

568*7  TL NNN  and geometry and mesh was created. Geometrical parameters of the 

region are as follows: 

 

Tab. 7.9 

Tube        

diameter d= 0.0164 m length l= 1 m 

surface of the tube wall S= 0.0515 m2     



Conducction and convection at turbulent flow  

110 

 

horizontal spacing SL= 0.0343 m vertical spacing ST= 0.0313 m 

 SL/d= 2.0915   ST/d= 1.9085  

 ST/SL= 0.9125      

number of tubes horizontally NL= 7  number of tubes vertically NT= 8  

number of tubes in system N= 56      

wall temperature Ts= 70 oC wall temperature Ts= 343.15 K 

 

The tubular system was blown with air in region defined as surroundings while the desired 

physical properties of air and the flux were given. Data are defined identically for comparison 

with example published in lit.[2] . 

Tab. 7.10 

Surroundings        

width D= 0.2555 m length L= 0.2422 m 

 

Tab. 7.11 

Properties of air       

density  1.2295 kg∙m-3 temperature Tref= 15 0C 

viscosity  1.48E-05 m2∙s-1 viscosity dyn.  1.82E-05 Pa∙s 

thermal 

conductivity 

 0.0253 W∙m-1∙K-1 temperature 

conductivity 

a 2.04E-05 m2∙s-1 

specific heat cp= 1007 J∙kg-1∙K-1     

velocity u= 6 m∙s-1 velocity max. umax= 7.7 m∙s-1 

mass flow Qm= 0.176 kg∙s-1     

 

The parameters are estimated according to [2] that will be necessary in a calculation, such 

as the maximum velocity. Mass flow is defined in 2D task for the depth of region (tube length) 

equal to 1 m. Physical properties are defined as temperature independent, but they can be 

used when calculating the relationship of these variables depending on the temperature 

which offers Fluent (polynomial dependence or using kinetic theory) . 

The above parameters of flow and heat transfer (Reynolds number is calculated from 

velocity maximum) can be computed using given parameters. Estimate of Nusselt number is 

problematic and it is really approximated only. From this estimation the calculation of heat 

transfer coefficient on the wall follows 
d




Nu
 . 
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Tab. 7.12 

Reynolds number max. Re= 
8521 

 turbulent flow 

Prandtl number Pr= 
0.7253 

  

correction factor  C1= 
0.229   

exponent m= 
0.632 

  

Nusselt number Nu= 
69.81   

heat transfer coefficient  = 
107.69 

W∙m-2∙K-1 

 

Next, a calculation of thermal power will has been done, where the estimate the average 

logarithmic temperature is used. The results are in the following table. 

Tab. 7.13 

Calculation of thermal power    

temperature difference at the input Ts-TI= 55.00 K 

estimate of the temperature difference at the output Ts-TO= 48.28 K 

logarithmic mean temperature Tlm= 51.57 K 

thermal power P= 16023.83 W 

 

Calculation of pressure drop again uses empirical relationships, see Tab. 7.14. 

Tab. 7.14 

Calculation of pressure drop    

coefficient A= 0.1236  

coefficient B= 1.2115  

loss coefficient  = 2.1593  

correction coefficient  g= 1.4000  

pressure drop p= 334.51 Pa 

These calculations will again be compared with the numerical model. It is expected that the 

task is more complicated in terms of geometry and so the results of numerical solutions are 

different. 

 

Mathematical model 

In this task, there is a turbulent flow according to previous calculations of Reynolds 

number. Mathematical model RNG k- is again used. The Reynolds number is high, 

therefore it is the turbulent regime, but model k-will also be tested. 
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Creating geometry and mesh 

According to the above dimensions the mesh has been formed, see Fig.  7.17. 

 

Fig.  7.17 Geometry and mesh 

 

Results 

Fig.  7.18 shows a decrease of the static pressure in the flow direction and, 

moreover, irregular distribution close to tubes due to velocity changes, swirl eventual flow 

separation behind tubes, which is evident from a further detailed view of the stream function 

in Fig.  7.19. 

   

Fig.  7.18 Distribution of static pressure inside the area and a detail of pressure distribution 

inside the area vs. length area in the graph 
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Fig.  7.19 Detail of flow separation behind tubes 

 

It is interesting the temperature distribution. Due to a predefined constant temperature on the 

tube walls the flow temperature is certainly overestimated, since the tube due to the cool air 

flow through the tubular system must be cooling. Also, the temperature in the tubes is 

assumed constant. 

  

Fig.  7.20 Static temperature in the whole region and at the input (constant) and the output 

(periodicity is given by bypassing a number of tubes) 

 

Very informative graph dependency is gained using PLOT X-Y. On Fig.  7.21 and Fig.  7.22 

the curves estimating the surface heat transfer coefficient and Nusselt number are evaluated. 

It is interesting to observe the periodicity of the values on which it is necessary to determine 
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the area averaged values to compare it later with empirical estimates. See that the 

progression of these functions do not change much behind the fourth-fifth series of tubes. 

 

Fig.  7.21 Surface heat transfer coefficient on the walls of the pipe 

 

 

Fig.  7.22 Nusselt number evaluated on the walls of the pipe 

 

The results of theoretical - empirical estimation of significant quantities during the air flow  

through the tubular system with heat transfer are compared in the following table with the 

area averaged values obtained from numerical solution. The differences are significant and 

are caused by bypassing the first three to five tubes, and that the total number of rows is in 
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real exchangers considerably greater. Average logarithmic temperature in the numerical 

calculation does not occur because it is not needed to determine other variables. 

Tab. 7.15 

 estimation k-model 

adapt 

Surface heat transfer coefficient [W.m-2.K-1] 107.69 85.42 

Nusselt number [1] 69.81 57.89 

Mean logarithmic temperature 51.57  

thermal power [W] 16023 13591 

pressure drop [Pa] 334.51 179.67 

 

7.7.2. The arrangement of the tube bundle to cross  

The second commonly used variant of the tube arrangement in heat exchanger is a 

variant of the arrangement of the tube bundle to cross. 

Geometrical parameters of region are very similar, tube dimensions and spacing agree, 

tubes in each second row are shifted in the vertical direction. Also, velocities, inlet 

temperature and tube temperature are identical to the previous example. Therefore, only the 

different parameters are given. 

The tubular system was blown with air in an area defined as surroundings, where due 

to the shift tubes the overall dimensions of region were changed  

Tab. 7.16 

surroundings        

width D= 0.27125 m length L= 0.2422 m 

 

Tab. 7.17 

properties of air       

density  1.225 kg∙m-3 temperature Tref= 15 0C 

viscosity  1.48E-05 m2∙s-1 viscosity dyn.  1.82E-05 Pa∙s 

thermal 

conductivity 

 0.0253 W∙m-1∙K-1 temperature 

conductivity 

a 2.04E-05 m2∙s-1 

specific heat cp= 1007 J∙kg-1∙K-1     

velocity u= 6 m∙s-1 velocity max. umax= 7.38 m∙s-1 

mass flow Qm= 0.176 kg∙s-1     
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The above parameters of the flow with heat transfer (Reynolds number is calculated from the 

velocity maximum) can be calculated by specified parameters: 

Tab. 7.18 

Reynolds number max. Re= 8167  turbulent flow 

Prandtl number Pr= 0.7253   

correction factor  C1= 0.48   

exponent m= 0.56   

Nusselt number Nu= 72.13   

heat transfer coefficient  = 111.28 W∙m-2∙K-1 

 

Estimation of Nusselt number and other flow parameters is performed as in the previous 

case and is approximated. 

  

Tab. 7.19 

Calculation of thermal power   

temperature difference at the input Ts-TI= 55 K 

estimate of the temperature difference at the output Ts-TO= 48.32 K 

logarithmic mean temperature Tlm= 51.59  

thermal power P= 15289.96 W 

 

Calculation of pressure drop uses empirical relationships too. 

 

Tab. 7.20 

Calculation of pressure drop    

coefficient A= 0.1236  

coefficient B= 1.2115  

loss coefficient  = 2.4274  

pressure drop p= 376.0533 Pa 

 

These calculations will be compared with the numerical model. 

 

Mathematical model 

In this task, there is a turbulent flow, but Reynolds number is relatively low. Thus, he 

results of the numerical model and estimates are accompanied by greater error, because we 
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are moving in the transition region between laminar and turbulent model, where definition of 

mathematical model is very difficult.  So turbulent model k-will also be used, because it si 

usefull for tasks with heat transfer for lower Reynolds number. 

 

Creating geometry and mesh 

According to the above dimensions the mesh has been formed, see Fig.  7.23 

 

Fig.  7.23 Geometry and mesh 

 

Results 

Fig.  7.24 shows a decrease of static pressure in the flow direction and, moreover, 

irregular distribution close to tubes due to velocity changing, swirl eventual flow separation 

behind the tubes. 
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Fig.  7.24 Distribution of static pressure inside the area and a detail of pressure distribution 

inside the area vs. length area in PLOT X-Y 

 

It is interesting the temperature distribution at the inlet (constant) and at the outlet (periodicity 

of temperature), see Fig.  7.25.  

   

Fig.  7.25 Static temperature in the whole region and at the input (constant) and the output 

(periodicity is given by bypassing a number of tubes) 

 

Very informative dependency is again evaluated in Fig.  7.26 and Fig.  7.27, i.e. the heat 

transfer coefficient and Nusselt number. It is interesting to observe the periodicity of the 

values for which it is necessary to determine the area averaged values and to compare the 
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results of numerical solution with empirical estimates. See that the progression of these 

functions do not change much behind the fourth-fifth series of tubes. 

 

 

Fig.  7.26 Surface heat transfer coefficient on the walls of the tube 

 

 

Fig.  7.27 Nusselt number evaluated on the walls of the tube 

 

The results of theoretical - empirical estimation of significant quantities during the air flow 

through the tubular system with heat transfer are compared in the following table with the 

averaged values obtained from the numerical calculation. The differences are significant and 
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are caused by bypassing the first three to five tubes. Average logarithmic temperature in the 

numerical calculation does not occur. 

 

Tab. 7.21 

 estimation k-model 

adapt 

Heat transfer coefficient [W∙m-2∙K-1] 111.28 87.65 

Nusselt number [1] 72.13 50.8 

Mean logarithmic temperature 51.32  

Thermal power [W] 15289.96 11302.23 

Pressure drop [Pa] 376.06 118.91 
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8. Analysis of the heat exchangers 

Heat exchangers are devices that provide internal transfer of thermal energy 

(enthalpy) between two or more fluids, between a solid surface and the fluid, or between the 

particles and the fluid, in their interaction delivered without external work and heat. Fluids 

may be generally one-component or may be a mixture of both single- and binary. Typical 

applications are two-fluid heaters and coolers of fluids, wherein the two fluids are separated 

by a solid wall, and evaporators in thermal and nuclear power plants. Heat exchangers can 

be divided according to the construction, working fluid, the principles of work and many other 

different criteria. 

 

Fig.  8.1 Distribution of heat exchangers by the heat transfer process 

 

 

Depending on the number of flowing liquids there are two-, three- and N-fluid heat 

exchangers. Compact heat exchangers have a heat exchange surface density greater than 

700 m2 ∙ m-3 and noncompact ones less than 700 m2 ∙ m-3. According to the construction, 

there are tubular, plate, with extended area by ribbing etc. and regenerating. 

 

Distribution by type of heat transfer 

direct interaction of media indirect interaction of media 

direct transfer of energy 

accumulative type 

fluidized bed 

single-phase multi-phase 

immiscible liquids 

gas-liquid 

vapor-liquid 
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Fig.  8.2 Division of heat exchangers by media flow 

 

 

 

Fig.  8.3 Division of heat exchangers according to the mechanism of heat transfer 

8.1. Basic types of heat exchangers and their description 

8.1.1. Exchanger of fluid-fluid tubular type 

Heat exchangers of fluid- fluid type are most common heat exchangers, in particular 

the tubular, tubus, spiral heat exchangers, whereby it is used usually the liquid-gas system or 

one of the fluids can change phase (boiling, evaporation, condensation). Heat exchangers 

may be paralel-flow, counter-flow and cross type. Examples include heat exchangers in 

boilers, superheaters, evaporators, economizers, parallel-flow and counter-flow water coolers 

of stationary hydraulics etc. Their design is very varied and depend on the type and purpose 

of the installation of the heat exchanger. 

Division by fluid flow 

simple interaction 

of fluids 

multiple interaction of 

fluids 

Paralel-
flow  

Counter-
flow 

cross divided 

flow 

with ribbed surfaces shell-tubular  tubular 

Division according to the mechanism of heat 

transfer 

Single-phase convection on both sides 

Single-phase convection on one side, two-phase convection on the other side 

Two-phase convection on both sides  

Combined convection and radiation transfer  
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Fig.  8.4 Scheme a tubular paralel-flow and counter-flow heat exchanger with the function of 

temperature vs length of the heat exchanger and its implementation [3] , [20] , [21]  

 

 

 

Fig.  8.5 Scheme of cross and tubular heat exchanger [3]  
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inlet 2 outlet 2 
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Fig.  8.6 Scheme of shell-tube heat exchanger  [3]  

 

 

inlet 2 

outlet 1 outlet 1 inlet 1 

inlet 2 outlet 1 

outlet 2 inlet 1 
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Fig.  8.7 Scheme of the shell-tube heat exchanger with a different location of inputs and 

outputs and baffles [22]  

8.1.2. Finned heat exchangers 

         This type of heat exchangers 

consists of a flat plates, provided 

with ribs made from thin sheet 

metal. For the gas-liquid 

exchanger, the heat exchange 

surface on the gas side is always 

riveted. If it is a gas-gas heat 

exchanger, the area may be ribbed 

on both sides of the exchanger.  

 

Fig.  8.8 Scheme of finned heat exchanger [23] . 
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For liquids the ribs can not be used because of large pressure force of thin ribs and 

the possibility of collapse of ribbed structure. The ribs are generally made from a material 

with high thermal conductivity, eg. copper or aluminum, and are made of thin sheet bending 

or shearing process, see Fig.  8.10. Average number of ribs is then 120-700 fins per 1 m of 

length. At the heat exchangers with high power, this value may be up to 2100 ribs per 1 m of 

length. This ensures a high heat transfer surface, which can be up to 1300 m2∙m-3. The 

following figure shows the typical configuration of the heat exchanger of type liquid-gas and 

gas-gas. Structural arrangement can be very varied and again depends on the type of 

application for which the exchanger is used. 

 

 

Fig.  8.9 Typical configuration of finned heat exchanger gas-gas and gas-liquid [3] . 

 

 

 

Gas flow 
direction 1 

Gas flow 
direction 2 

Gas flow direction 

Liquid flow 
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Fig.  8.10 Examples of finn [3] . 

 

Finned exchangers are mainly used in the field of cooling of liquids and gases through the 

flowing air. It is thus eg. water cooler of an internal combustion engine, various cooler of air-

conditioning units, radiators, hydraulic circuits in mobile hydraulics. The cooler is usually 

fitted with a propeller fan, which provides sufficient air flow. For the car the air flow exists due 

to moving of vehicle (ie. ram air cooling) and the fan operates only when the vehicle is not 

moving longer and engine possibly air conditioning unit is still running. 

8.1.3. Plate heat exchangers 

Plate heat exchangers are constructed from thin plates (sheets), which separate 

media. This type of heat exchangers has a relatively large heat transfer area, but on the 

contrary it is not designed for high pressures and temperatures, as well as temperature and 

pressure difference. Plate heat exchangers are structurally very simple and variable. On the 

base axis two mirror plates are placed to separate fluid. Depending on the desired power a 

sufficient number of plates is then placed on a beam and the entire heat exchanger is ended 

by lid. Each plate is fitted with a seal made of elastomer which ensures the separation of 

media. The seal on each plates is alternating, ensuring the periodic alternation of media 

between the plates. 

This type of heat exchanger is predominantly compact with a relatively large heat 

exchange surface (rib) and uses in cases where it is necessary to keep following criteria  
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 both fluids must be clean and shall not cause 

corrosion because the heat exchanger has a 

small hydraulic diameter due to the small flow 

channels 

 heat exchangers are characterized by 

relatively high pressure drop which is 

proportional to heat exchanger power 

 pressure and temperature of the media are 

limited by design, thickness of plates and 

resistance of seal 

 this type of heat exchangers is compact and 

has a large heat transfer area that is to 6000 

m2∙m-3. 

  

Fig.  8.11 An example of a plate heat 

exchanger [19]  

Plate heat exchangers are used wherever great power is required, with relatively small 

installation dimensions. But they can not be used in heavy applications, due to their 

sensitivity to pollution and consequent increase in pressure drop. 

 

Fig.  8.12 Schema of the plate heat exchanger [3] . 
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outlet 1 
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8.2. Thermal power and pressure drop of heat exchanger 

8.2.1. Thermal power 

 The thermal power and pressure drop are two basic design parameters of heat 

exchangers. For simplicity, the basic calculation formulas are based on a simple exchanger, 

which will separate two fluids using solid walls of a given thickness, see Fig.  8.13, [3] . 

 

Fig.  8.13 Scheme of fluid and heat flows in heat counterflow exchanger [3] . 

 

 Energy analysis is based on calorimetric equation, which describes the exchange of 

heat between two immobile bodies. At substitution of the bodies mass in calorimetric 

equation by the fluid mass flow we obtain an equation for the power of the heat exchanger. 

Index c denotes cool fluid, h denotes heat fluid, I denotes input of fluid, O denotes output of 

fluid. Because the law of energy conservation is valid, at perfectly insulated system the 

thermal power for cooling and heating fluid is identical. For heated fluid (indexing c) the 

power cP  is positive because the output temperature of the fluid is higher than the input 

th,I th,O 

tc,O tc,I 

q 

t 

th 

heat flow direction 

Qm,h 

Qm,c 

Fluid flows 

Qm,c - mass flow of heated fluid 

Qm,h - mass flow of cooled fluid 

x 

cooled fluid 

heated fluid 

th,s 

tc,s 

Temperature 

th,I - input of hot fluid 

th,O - output of cooled fluid 

tc,I – inlet of cold fluid 

tc,O – outlet of heated fluid 

th,s - temperature of solid walls, hot side 

tc,s - temperature of solid walls, cold side 

th  - curve of temperature in cooling fluid 

tc  - curve of temperature in heated fluid 

 

 

tc 

S 

S - heat transfer surface 

q - heat flux 

d - dimension of solid wall 

   - heat transfer coefficient 

 

d 

h 

c 

h,c 
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temperature IcOc tt ,,  . In other words heated fluid receives heat, so the power is positive. For 

cooling fluid (indexing h) on the contrary the outlet temperature of media is lower than the 

input temperature IhOh tt ,,  , power hP  is so negative, because the fluid gives the heat. In 

absolute terms, however, these powers are identical. 

 IcOccpcmc ttcQP ,,,,    [W] 

 IhOhhphmh ttcQP ,,,,   

hc -PPP   

( 8.2.1) 

where cpc ,  [J∙kg-1∙K-1] is the specific heat capacity of the cooling fluid (heated), and hpc ,   

[J∙kg-1∙K-1]  is the specific heat capacity of the cooled fluid. Both thermal capacity are defined 

at a constant pressure. 

Heat also passes through a solid wall of heat exchanger from the hot fluid to the cold 

fluid. Heat conduction through the solid wall is described by the following equation  

S
d

tt
P scsh ,, 
   ( 8.2.2) 

This equation solves only heat conduction in the solid wall. Near the wall, however, the 

velocity and  temperature boundary layer is situated. Thermal boundary layer is associated 

with heat transfer coefficient that defines how strongly the heat is transferred from fluid to 

solid wall or vice versa. The equation for heat transfer for hot and cold wall is given by the 

following equation 

 SttP cscc  ,   

 SttP hshh  ,  
( 8.2.3) 

Heat transfer coefficient is related to the dimension of the thermal boundary layer. The 

temperature boundary layer is a thin layer of fluid near the solid walls, in which the 

temperature varies from temperature of solid walls to temperature very close to temperature 

of uninfluenced flow. The velocity boundary layer is similarly defined, it is a thin layer near 

the wall, where the velocity rises from a zero value on the wall to a value very close to the 

uninfluenced flow. It is important to remember that the thickness of the thermal boundary 

layer t  and the thickness of the velocity boundary layer   are not identical, and their 

thicknesses are controlled by different physical processes. 
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Fig.  8.14 Illustration of velocity and temperature boundary layer 

 

By introducing of heat transfer coefficient in the equation (8.2.2) we obtain the equation for 

heat transfer. 

S
d

tt
P

c

h

h

ch



11



  

( 8.2.4) 

This removes the temperature of the solid wall, which does not interest us in the calculation 

because it is the inner part of the heat exchanger and only the temperature of the inlet and 

outlet fluids in the heat exchanger is of interest to us. Furthermore, the new variable is 

introduced and will be called the heat transfer coefficient. 

ch

d
k



11

1



   ( 8.2.5) 

After introduction of heat transfer coefficient, then the equation for the power goes into 

formula  

 SttkP ch   ( 8.2.6) 

By analyzing the previous relationship we can thus determine the parameters that affect the 

power of heat exchanger. If the intention is to maximize the power, then it must be based on 

the following conditions  

 wall thickness should be as small as possible (this is the reason of thin walls in heat 

exchangers) 

 thermal conductivity of the solid walls should be as large as possible (this is the reason 

why using materials with high thermal conductivity, aluminum, copper, etc.) 

 heat transfer surface should be as large as possible (that's why it's large number of ribs, 

finnes, small tubes etc. in heat exchangers). 

 coefficient of heat transfer should be as large as its value can be influenced by fluid 

velocity, but with velocity increasing, however, the pressure loss increase with the square 

of velocity. 

u 

u = 0 

v 

t 

ts t 
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8.2.2. Pressure drop 

Source of pressure and kinetic energy, which ensures the flow of medium through the 

heat exchanger, is a pump, fan or blower. Pressure loss of the heat exchanger is highly 

dependent on the physical fluid properties (density, viscosity, etc.). The power, which is 

necessary to supply the fluid flow through the exchanger in a given amount, can be 

determined by the pressure drop from the following equation, see [3] , [11] : 



pQ
P m  

( 8.2.7)  Ref
d

l
P

h

4

2

1
2


  for laminar flow 

2081

0

82

2

20 4

2

0460
..

...

h

m

h dS

Q

d

l
P




  for turbulent flow 

 l  is the length over which heat transfer occurs, hd  is the hydraulic diameter and 0S  is the 

minimum flow area of the heat exchanger. 

Generally, the pressure loss of the exchanger depends on the following parameters: 

 frictional losses associated with friction (viscous) forces of fluid flow around the heat 

transfer surfaces 

 torque effect related to the change of density during the flow in the exchanger 

 compression and expansion of the fluid when it flows around bodies (heat transfer 

surfaces) 

 geometric parameters of heat exchanger (for large vertical heat exchanger we must also 

include static pressure caused by gravity, for gases, this loss is neglected). 

Determination of pressure loss is very difficult and in the literature there are numerous 

empirical and semi-empirical formulas for each type of heat exchanger. Pressure loss in the 

analytical calculation consists of friction and local losses [3]  

2

42

8
m

hh

Q
dd

l
p


 







  ( 8.2.8) 

where    is the friction loss coefficient,   the local loss coefficient determined empirically for 

hydraulic system, l  is the length at which there is a heat transfer. 

Pressure losses in the exchanger must always be solved at both sides of heat 

exchanger i.e. for both fluids. In many heat exchangers the determining a pressure drop is 

based on solution of pressure loss in flow around the body or pressure loss during flow in a 

closed channel (a tube, a thin gap, etc.). The simplest case occurs in tubular exchangers, 

where one fluid is flowing inside the tube bundle and a second one flows across the tube 
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bundle. When fowing around the tube bundle it is possible to determine the pressure loss 

based on the equation including all losses in the local loss coefficient [3] .   

2

42

8
m

h

Q
d

p


   ( 8.2.9) 

where hd  is the diameter of the tubes. 

8.3. Methods for heat calculation of heat exchanger 

Heat exchanger calculation can be done by a variety of methods, professional 

standards, etc. The methods are therefore [3] : 

 NTU* method 

 PNTU* method 

 MTD** method 

*NTU - Number of Transfer Units 

**MTD - Mean Transfer Difference 

For all methods there are idealized the material properties, it is believed that the 

specific heat capacity is constant, and if it is a function of temperature, is necessary to 

calculate the mean temperature of the fluid for which the value of the specific heat capacity 

will be determined. The same procedure must be applied to other physical properties such as 

density, thermal conductivity, etc. 

8.3.1. Method -NTU 

In this method, the heat transfer from the hot fluid to the cold fluid in the heat 

exchanger is represented by the equation [3]  

   IcIhpmc ttcQP ,,min
    

    
hphmcpcmpm cQcQcQ ,,,,min

;MIN  
( 8.3.1)  

Variable   represents the effectiveness, which is function of many variables, and may only 

take values 10   

 *,CNTUf  ( 8.3.2) 

variable  *,CNTUf  is expressed by relationship 

 
   

 
   IcIhpm

OhIhcpcm

IcIhpm

OhIhhphm

ttcQ

ttcQ

ttcQ

ttcQ

,,,min

,,,,

,,,min

,,,,









  ( 8.3.3) 

Variable NTU can get values  and is defined by  



Analysis of the heat exchangers 

134 

 

    

S

pmpm

kdS
cQcQ

kS
NTU

0

1

minmin

 ( 8.3.4) 

Proportional flow rate 
*C  can take values 10 * C  and is defined by 

 
 

max

min*

pm

pm

cQ

cQ
C   ( 8.3.5) 

8.3.2. Method P-NTU 

P-NTU is a variant of the -NTU method which removes generality and specifies the 

calculation due to the different designs of heat exchangers. In this method, the calculation is 

related to one fluid, because from the relationship there is indicated equality of power in both 

fluids. In this chapter the index 1 is used for heating liquids and the index 2 for cooling fluid 

(for simplicity, here is done the procedure of calculation relative to heating liquids) [3] . 

 IIpm ttcQPP ,,,, 21111    ( 8.3.6) 

Variable 1P  represents the thermal efficiency, which is a function of variable NTU, 

temperature resistance 1R  and heat exchanger type (co-flow, counter-flow and cross 

exchanger) 

 exchangerheat  of type,, 111 RNTUfP   ( 8.3.7) 

Temperature resistance 1R  can be determined based on the temperature of both fluids 

 
 IO

OI

tt

tt
R

,,

,,

11

22

1



  ( 8.3.8) 

For clarity, we will still find relationships for conversion between fluids 1 and 2 

IIpmIIpm ttcQPttcQPP ,,,,,,,, 1222221111   

221 RPP                            112 RPP                   

221 RNTUNTU               112 RNTUNTU      

2

1

1

R
R   

( 8.3.9) 

8.3.3. Method MTD 

This method also regulates calculations in method P-NTU using a correction factor 

F . This method does not include a simple temperature difference but a mean logarithmic 

temperature difference lmt   (Log Mean Temperature). The power is then defined by the 

relationship [3]  
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lmtkSFP   ( 8.3.10) 

Mean logarithmic temperature difference is given by the relationship, which is dependent on 

the fluid flows in the heat exchanger. 

2

1

21

t

t

tt
t lm








ln

 
( 8.3.11) 

where temperature diference 1t  and 2t  are defined  

OcIh ttt ,,  1 , IcOh ttt ,,  2  for all heat exchangers except co-flow one 

IcIh ttt ,,  1 , OcOh ttt ,,  2  for co-flow heat exchanger 
( 8.3.12) 

The following table lists the equations for the basic construction types of heat exchangers for 

the method P-NTU and MTD, see [3] . 

 

Tab. 8.1 Basic computational formulas for different types of heat exchangers for method P-

NTU and MTD 

Type of heat exchanger formulas 

Counter-flow heat exchanger 

 

  
  111

11
1

11

11

RNTUR

RNTU
P






exp

exp
 

















1

11

1

1
1

1

1

1

P

PR

R
NTU ln  

1F  

Co-flow heat exchanger 

 

  

1

11
1

1

11

R

RNTU
P






exp
 

 












111

1
11

1

1

1

RPR
NTU ln  

 

    111

1

11
1

111

1

1
1

RPR

P

PR
R

F

















ln

ln

 

1 

2 

1 
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Cross heat exchanger 

1 – flows in tubes or finnes 

2 – flows aroud tubes 

 

 

1

1
1

1

R

KR
P




exp
 

 11 NTUK  exp  

 




















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1
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   



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


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
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


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Cross heat exchanger 

1 – flows aroud tubes 

2 - flows in tubes or finnes  

 









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Shell-tubular heat exchanger 

1 - flows in the tubus 

2 - flows in the tubes 
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8.4. Solution of co-flow and counter-flow heat exchanger 

To illustrate the flow and temperature field and the definition of the mathematical 

model, the physical properties of the flowing media and boundary conditions, the simplified 

scheme of co-flow heat exchanger was chosen. Flowing medium is water and air or possibly 

again water. The physical properties of the gas are generally highly dependent on 

temperature, which will be changing. Therefore, in the next the options defining these 

dependencies will be listed. Physical properties of water may be defined as a function of  

temperature by methods previously described. In conclusion the graphical evaluation of 

options will be presented. 

8.4.1. Physical properties of gases (kinetic theory) 

In chap. 1.3. the basic physical properties were defined. The gas density is given by 

the ideal equation gas and it is able to take into account the influence of temperature and 

pressure, ie. 

rT

p

RT

Mp
T

M

R
mpV    ( 8.4.1) 

 

Kinetic theory  

Other physical quantities can depend on temperature by experimentally determined 

functions, such as polynomial, table, etc. According to the kinetic energy of an ideal gas [6] 

the following physical properties and characteristics can be defined: 

 viscosity 

 thermal conductivity 

 specific heat capacity 

 mass diffusion coefficients (for the special multi-species mixture) 

Definition of the dynamic viscosity   using kinetic theory is as follows: 




2

610672
MT ..  ( 8.4.2) 

where  

 *T      a   
 Bk

T
T

/

*


  ( 8.4.3) 

Function   is experimentally determined dimensionless dependence on temperature for 

air, e.g. [8] : 
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     **.* .exp

.

.exp

..

TTT 437872

161782

773200

524870161451
148740

  

The formula for the specific heat capacity pc  using kinetic theory is: 

 2 f
M

R
c p  ( 8.4.4) 

where f  is the number of modes of energy (number of degrees of freedom). Thermal 

conductivity   using kinetic theory is expressed as follows:  









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3

1

15

4

4

15

R

Mc

M

R p  ( 8.4.5) 

Parameters of air, vapor or other gases for the kinetic theory are given in the database 

Fluent [9]: 

 

Tab. 8.2 – Parameters of air and vapor (for kinetic theory) 

mass Molecular mass Lennard-Jones parameters 

M [kg∙kmol-1] σ (Å) ε/κB (oK) 

air 29 3.617 97 

vapor H2O 18 2.605 572.4 

 

8.4.2. Co-flow heat exchanger water-water 

The flow in the co-flow heat exchanger has been tested to confirm the temperature 

distributions presented in chap. 8.1. The flow must be assumed very slow in order to transfer 

the heat in given geometry and to represent a typical temperature drop, or rise of 

temperature. The optimal flow will be theoretically laminar, unfortunately this type of small 

liquid flow rate source does not exist. Therefore, the examples in next chapters will be 

devoted  to real flow (i. e. turbulent). 
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The schema of region with an inlet and outlet faces and a mesh are displayed na Fig.  

8.15. Fluid (water) is assumed to be an incompressible liquid with constant physical 

properties (for higher temperature the properties as a function of temperature can be 

defined).  

 

  

Fig.  8.15 Scheme of region and mesh 

 

Dimensions of region, input and output are given in Tab. 8.3. 

 

Tab. 8.3 

Region x= 0.5 m    

 y= 0.12 m    

 z= 0.08 m    

inlet 1 

outlet 1 

inlet 2 outlet 2 

Tinlet 1 

Toutlet1 

Tinlet 2 

Toutlet 2 

inlet 1 

outlet 1 

inlet 2 

outlet 2 

Toutlet 1 Tinlet 1 

Tinlet 2 

Toutlet 2 

Inlet - 

outer 
Inlet - 

inner 

Outlet - 

outer 

Outlet - 

inner 
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Inlet – outer –water S= 7.65E-05 m2 d= 0.01 m 

Inlet – inner - water S= 0.00031214 m2 d= 0.02 m 

 

For simplicity, a mesh from tetrahedral elements with 131,133 cells was created. 

 

Physical properties and mathematical model 

The water flows in both parts of area representing the co-flow cooler. The walls are 

made from steel tubes of various diameters. Liquid is assumed to be an incompressible liquid 

with constant physical properties (basic gas parameters can be found and copied from the 

Fluent database, including the Lennard - Jones parameters). 

 

Tab. 8.4 

Physical properies  Units Label Water     

Density kgm-3  998     

Specific heat J.kg-1K-1 cp 4182     

Viscosity kinematic m2s-1  0.000001     

Viscosity dynamic Pa.s  9.98E-04     

Thermal conductivity Wm-1K-1  0.6     

Temperature conductivity m2s-1 a 1.44E-07     

 

Reynolds number was determined from the mass flow estimation. Its value is low, it is 

a laminar flow, see Tab. 8.5.  

Tab. 8.5 

   Tube  inner water Tube outer water 

Mass flow rate kgs-1 Qm= 0.0003 0.0003 

Velocity ms-1 u= 0.00096 0.0038 

Reynolds number  Re= 19 38 

 

Boundary conditions 

Because this is an illustrative example where the flow trajectories, temperature, 

density will be monitored, the boundary conditions were pre-defined and modified so that 

these characteristic variables were clearly visible. The input variable is mass flow rate. 
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Tab. 8.6 

 Mass flow 

rate 

[kg3∙s-1] 

Static 

pressure 

[Pa] 

Total 

temperature 

[oC] 

Inlet - outer  0.0003  20 

Inlet - inner 0.0003  80 

Outlet - outer  0  

Outlet - inner   0  

 

Numerical calculation is very stable and converges well. The complexity of the flow can be 

evaluated by flow trajectories of liquid elements colored by temperature, see Fig.  8.16. This 

phenomena also applies to other variables such as pressure, velocity and temperature, see 

Fig.  8.17 till Fig.  8.19. Typical temperature distribution along the axis, i.e. decreasing curve 

in the "outer" area, and increasing curve in the „inner“ area can be evaluated using a graph 

of  temperature in areas parallel to the axis of the tubes is evaluated, see Fig.  8.20.  A curve 

typical for the co-flow exchanger could be obtained by converting a graph into Excel and by 

passing a trend line. 

 

  

Fig.  8.16 Trajectories of particles colored by 
temperature 

 

Fig.  8.17 Static pressure in xial direction and 

in three cross sections 
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Fig.  8.18 Velocity magnitude in axial direction 

and in three cross sections 

Fig.  8.19 Static temperature in axial direction 

and in three cross sections 

 

 

Fig.  8.20 Static temperature in interior - inner, interior – outer 

 

Surface heat flux is a significant parameter specifying the heat transfer and is evaluated on 

the entire surface of the inner tube or by graph Fig.  8.21. 

 

  

Fig.  8.21 Surface heat flux 
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The heat transfer coefficient and the Nusselt number are evaluated on the inner wall. The 

values are based on the heat flux towards the inner or outer flowing fluid. Because the wall is 

a double-sided wall, it is necessary to determine which wall belongs to the wall-interface and 

the wall-interface-shadow using Boundary condition command. Surface heat transfer 

coefficient is determined again by equation 
refw TT

q


  and subsequently Nusselt number 



 refd
Nu . It is clear from the definition that the reference values of the temperature and 

the hydraulic diameter are related to the direction in which heat transfer is determined 

whether in the direction of the tube inner (wall-interface) or the tube outer (wall-interface-

shadow), see Fig.  8.22 and Fig.  8.23. 

  

Fig.  8.22 Surface heat transfer coefficient and Nusselt number on the wall interface Tref=353 

K, dh=0.02 m 

 

  

Fig.  8.23 Surface heat transfer coefficient and Nusselt number on the wall interface shadow 

Tref=293 K, dh=0.01 m 

 

The heat power of this heat exchanger across all defined areas can also be determined: 
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After a detailed calculation of the heat power between the inputs and outputs we see, that 

the value is the same as the heat power through the wall interface and is equal to 34 W. 

From the results its possible to determine average values of outlet temperatures, inlet 

pressures, heat transfer coefficients, Nusselt numbers, etc., see comparison of this results 

with results from solution of counter-flow heat exchanger in next chapter. 

8.4.3. Counter-flow heat exchanger water-water 

Geometry for the counter-flow heat exchanger is the same as that defined in chap. 

8.4.2 as a co-flow exchanger. Boundary conditions are the same, only the input for output for 

the outer area are changed. On Fig.  8.24 till Fig.  8.27 the trajectories of particles colored by 

temperature, pressure, velocity and temperature in the selected sections are evaluated. 

 
 

Fig.  8.24 Trajectories of particles colored by 

temperature 

Fig.  8.25 Static pressure in axial direction 

and in three transverse planes 
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Fig.  8.26 Velocity magnitude in axial 

direction and in three transverse planes 

Fig.  8.27 Static temperature in axial 

direction and in three transverse planes 

 

In Fig.  8.28 it is shown a typical temperature drop in both flow areas, more likely it would be 

to convert to Excel and use trend line. 

 

Fig.  8.28 Static temperature in interior - inner, interior – outer 

 

The heat flux through the wall interface and the wall shadow interface, ie on the inner 

wall is on Fig.  8.29. 

 

Fig.  8.29 Total surface heat flux 
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The heat transfer coefficient and Nusselt number are evaluated on the wall based on the 

heat flux towards the inner or outer flowing fluid using the formula 
refs TT

q


  and 



 refd
Nu . 

  

Fig.  8.30 Surface heat transfer coefficient and Nusselt number on the wall interface towards 

the inner area Tref=353 K, dh=0.02 m 

 

  

Fig.  8.31 Surface heat transfer coefficient and Nusselt number on the wall interface shadow 

towards the outer area of the area Tref=293 K, dh=0.01 m 

 

The heat power of this heat exchanger across all defined areas can also be determined and 

heat power accros the tube wall is 42 W. 
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Tab. 8.7 compares averaged pressure and temperature on inlets and outlets, averaged value 

of Nusselt numer and Suface heat coefficient  for co-flow and counter-flow heat exchanger. 

 

Tab. 8.7 

 Tube - inner   Tube - outer 

 co-flow 

Fluent 

counter-

flow Fluent 

co-flow 

Fluent 

counter-

flow Fluent 

Tref 353 353 293 293 

dref 0.02 0.02 0.01 0.01 

Nu-lam 1.52 2.29 0.63 0.81 

-lam 46.12 68.45 36 49 

Toutlet 325.13 353 320.29 326.29  

pinlet 0.039 0.02 0.078 0.078 
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8.4.4. Co-flow heat exchanger water-air 

          

      The geometry of this co-flow water and 

air heat exchanger was the same as in chap. 

8.4.2. Therefore, the same mesh was used. 

The flow medium in inner part of the 

exchanger will be high temperature air 

(substituent of flue gas). The flow will be 

turbulent and the boundary conditions will be 

set as the real conditions typical of the stove 

heat exchanger. 

 

  

Approaches to solution 

Solution of the hot gas flow with heat transfer is a complex problem and  complete 

mathematical model may ofen lead to divergence. Therefore, so-called step-by-step method 

(from the simplest to the more complex model) was used to obtain a stable and convergent 

solution. Subsequently, turbulent models, mesh, wall functions, or boundary conditions are 

repaired. In our case, this means that the following variants have been solved: 

 solution with constant physical properties, turbulent RNG k- model 

 solution with physical properties depending on temperature or pressure 

 if there are the convergence problems in stable regime, the task must be solved as time-

dependent and the statistically averaged values will be evaluated  

 solution with a better k- sst turbulent model, which is suitable for low Reynolds numbers 

 correction of mass flow rate to get corresponding temperature gradient (evaluation using 

average values of velocities and temperatures at inlets and outlets) 

 

Physical properties, mathematical model, boundary conditions 

The constant physical properties for water and air are taken from the Fluent 

database. To determine the Reynolds number 


hdu
Re , however, air density at 1100 °C 

was used.  

 

Tab. 8.8 

   Tube 

outer 

Tube 

inner 
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pressure Pa pref= 101325 101325 

temperature 0C Tref= 55 1100 

temperature absolut K Tref= 328 1373 

density kgm-3  998 0.255 

     

mass flow rate kgs-1 Qm= 0.03 0.0003 

velocity ms-1 u= 0.38274 3.74482 

Reynolds number  Re= 3827 4713 

 

For the calculation, water with constant properties and air with physical properties defined by 

kinetic theory is considered. The mathematical model is specified as turbulent. The task had 

to be solved as time-dependent and the results are the mean values of all evaluated 

quantities, including turbulent ones. Following these considerations, the boundary conditions 

can be defined as follows: 

Tab. 8.9 

Boundary 

conditions 

Mass flow 

rate 

[kg3∙s-1] 

Static 

pressure 

[Pa] 

Total 

temperature 

[oC] 

Turbulent 

intensity  

[%] 

Hydraulic 

diameter 

[m] 

Inlet - outer  0.0003  55 1 0.01 

Inlet - inner 0.03  1100 1 0.02 

Outlet - outer  0  1 0.01 

Outlet - inner   0  1 0.02 

 

Results 

The mean value of the basic hydraulic quantities is again evaluated. 

 
 

Fig.  8.32 The trajectories of particles 

colored by temperature 

Fig.  8.33 Mean static pressure in axial 

direction and in three transverse planes 
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Fig.  8.34 Mean velocity magnitude in axial 

direction and in three transverse planes  

Fig.  8.35 Mean static temperature in axial 

direction and in three transverse planes 

 

The effective viscosity (sum of turbulent and molecular viscosity) is very low, at least 

surpassing turbulent viscosity, see Fig.  8.36. This means that the flow is assumed in the 

transition between the laminar and the turbulent model, as evidenced by the value of the Re 

numbers in the initial estimation. The dimensionless dimension of the first cell near the wall 

of the inner tube is up to 10 (Fig.  8.37), meaning that the mesh is very fine, but it could be 

more coarsen at the wall. Enhanced Wall Treatment (two-layer wall function, y + should be 

up to 5) is better than the logarithmic wall function (y + should be between 30 and 60). 

   

Fig.  8.36 Effective viscosity in axial direction 

and in three transverse planes 
Fig.  8.37 y+ on the tube wall 

 

Figure 8.38 shows a typical gas temperature drop and a slight increase in water temperature, 

which is characteristic of the co-flow exchanger. The heat flux density is again symmetrical 

on the inner wall of the tube on the liquid side and on the gas side, see Figure 8.39. 
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Fig.  8.38 Mean temperature of liquid and 

gas in axial direction 

Fig.  8.39 Mean surface heat flux na the wall 

of inner tube 

 

Heat power through the walls is: 

 

 

An interesting result is comparison of the flow parameters in inner tube and outer tube, see 

Tab. 8.10 

Tab. 8.10 

   Tube inner        Tube outer 

    Fluent Fluent 

Tref 1373 328 
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dref 0.02 0.01 

Nu-turb 5.86 14.31 

 10.37 858.47 

Toutlet 374.56 330.60 

pinlet 2.32 140.96   

 

8.4.5. Co-flow heat exchanger air-water-air 

Higher cooling and heating of the flowing media can be achieved by increasing the 

heat exchange surface. For example, an extension area and inserting another tube with the 

flowing air into inside area causes a significant increase in heat transfer surface, see Fig.  

8.40. Inserting the tube into inner area is a simplified tube system in the axial direction. 

 

 

 

Fig.  8.40 Scheme of region 

 

Dimensions of region, inlets of air and inlet of water are defined in Tab. 8.11. 

 

Tab. 8.11 

Region x= 0.2 m    

 y= 0.09 m    

 z= 0.04 m    

Inlet outer – air S= 7.65E-05 m2 d= 0.01 m 

Inlet inner - water S= 5.7676E-05 m2 d= 0.02 m 

Inlet inner - air S= 0.00025447 m2 d= 0.018 m 

Inlet outer - 
air 

Inlet inner - 
air 

Inlet inner - 
water 

Outlet outer 
- air 

Outlet inner - 
water 

Outlet inner - 
air 
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The physical properties of the streaming media coincide with the previous task.  

 

Boundary conditions 

The boundary conditions have been defined so that the flow of hydraulic quantities and 

temperatures can be monitored. 

  

Fig.  8.41 Trajectories of particles colored 

by temperature 

Fig.  8.42 Static pressure in axial direction 

and in three transverse planes  

  

 

 

  

Fig.  8.43 Velocity magnitude in axial 

direction and in three transverse planes 

Fig.  8.44 Static temperature in axial direction 

and in three transverse planes 

  

In the previous figures it is possible to evaluate the difference in co-flow water-air heat 

exchanger. Fig.  8.45 shows a more significant change in flow direction. 
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Fig.  8.45 Static temperature in interior - inner, interior – outer and on interface 

 

Heat pover of wall outer is 6.25 W and  wall inner is 9.07 W. 

 

Tab. 8.12 Co-flow heat exchanger   

  air – water - air 

 static 

temperature 

[K] 

static 

pressure 

[Pa] 

Inlet-outer-air           283.136 38.237 

Inlet-inner-water           313.150 1.869 

Inlet-inner-air           283.148 0.4817 

Outlet-outer-air            295.591 0 

Outlet-inner-water        305.820 0 

Outlet-inner-air           301.552 0 
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9. Time dependent solution 

Generally the flow around the body is typical by separating flow and vortex shedding, 

which are time-dependent structures. Flow is time-dependent. Numerical solution of such 

flow in both laminar and turbulent regime is time-dependent too, see Fig.  9.1. Response to 

time-dependent boundary conditions is time-dependent too, see Fig.  9.2. Then you must 

undergo a complicated and time-consuming solution. It is a function of time. 

 

Fig.  9.1 The formation of vortex shedding when flowing around cylinder [18]  

 

 

Fig.  9.2 Progress of velocity as a response to a constant and sinusoidal velocity at the input 

on the left side (periodic boundary condition produces periodic flow in the area) 
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9.1. Discretization of time-dependent equation 

In case of time dependent flow it is assumed default balance equation (for simplicity, 

one-dimensional shape) for general variable in the form  

  

















S

xx
u

xt









  ( 9.1.1) 

In integral form it is  

   









VAAV

dVSdA
x

dAudV
t










 ( 9.1.2) 

The default equation must be discretized in time and space. Spatial discretization for time-

dependent equation is identical to the stationary task. Time discretization includes the 

integration of each member of differential equations with a time step . Integration of time 

expression is simple, as will be described below.  

The above equation is written in general form  

 


F
t





 ( 9.1.3) 

where the function  contains spatial discretization. On the time derivative it is applied 

differential approximation of the first-order forward, then discretized equation is given as  

 
( 9.1.4) 

and eventually discretization of second order accuracy is  

 


F
t

nnn




  11 43
 ( 9.1.5) 

where   general scalar variable 

   value in following time   

  value in time  

 value in previous time   

Time discretization of default equation ( 9.1.2) assumes an implicit approach, ie convection, 

diffusion and source term are evaluated in time   





 




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


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dAudV
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1
1

11







 ( 9.1.6) 

In the iterative scheme, all equations are solved iteratively for a given time step until 

convergence is reached. Thus, the solution in each time step requires a certain number of 

external iterations until it converges within each time step (corresponding converging 

stationary tasks in each time step).  
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Fig.  9.3 Diagram of solution using segregation of solver. 

 

The choice of the time step is problematic. If the time dependence is caused by the known 

boundary condition, then it is possible to approximately estimate the time step. Otherwise, 

the time dependence due to eg. vortex shedding behind the sharp edge, it is necessary to 

test the size of time step at the beginning of the calculation, and meet the following 

requirements  

 ideal recommended number of outer iterations at each time step is 10-20  

 a bigger number of iterations means a big time step  

 a smaller number of iterations means a small time step  

 beginning of calculation will be realized for relatively small time step  and during 

the calculation gradually it can be increased  

(in every time step) 
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Evaluation of calculation with time-dependent step is possible with automatically storing 

data files using the FILE-WRITE-AUTO-SAVE. It is a regular saving of solution results after a 

certain number of time steps during calculation. Another option is to store the values of 

selected variables in a specific location of the area during the time-dependent 

solutions, to monitor their changes over time and to assess whether eg. the solution 

approaches steady state while monitoring the run-up system. First, it creates so-

called monitoring points in the menu SURFACE-POINT by entering the exact 

coordinates of the point or by mouse estimation. In the command SOLVE-

MONITORS-SURFACE INTEGRALS it is then possible to select the point and 

variable being evaluated. Record versus time can be recorded in a file and in a graph 

on a monitor. Of course the optimal evaluation is by animations created directly by 

software during the calculation. 

9.2. Boundary conditions  

Time-dependent boundary conditions can be entered in two ways:  

 using the file (table) to define a profile  

 UDF (User Defined Function) – to define by the C language, store, compile, assign the 

boundary conditions using the file (table)  

9.2.1. Table for time-dependent boundary condition 

Table is created by text editor vith extention TXT. Format of such table is following: 

 

profile-name n_field n_data periodic? 

field-name-1 field-name-2 field-name-3 .... field-name-n_field 

v-1-1   v-2-1  ... ... ... ... v-n_field-1 

v-1-2   v-2-2  ... ... ... ... v-n_field-2 

. . . 

v-1-n_data v-2-n_data ... ... ... ... v-n_field-n_data 

 

where profile-name    name of all variables 

 n-field     number of variables  

n-data   number of data characterizing the functional      

dependence (number rows in the table)  

periodic?    equals 1 for periodic condition,  
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equals 0 for aperiodic condition 

field-name-1  is exclusively used for a time vector whose values must 

increase  

field-name-i    vectors of other time dependent variables 

v-1-1 … v-n_field-n_data  items in a matrix whose columns correspond to the time 

dependencies of the vectors of time 

 

File of dependance of velocity vs time   

Table of input values Table of input values for Fluent 

time u sampletabprofile 2 3 0 

time u 

1 10 

2 20 

3 30 

1 10 

2 20 

3 30 

 

 

 

 

File of periodical dependance of velocity vs time   

Table of input values Table of input values for Fluent 

time u sampletabprofile 2 4 1 

time u 

0 10 

1 20 

2 30 

3 10 

0 10 

1 20 

2 30 

3 10 

All variables must be entered in SI units (no conversion of data is required when 

reading a profile, and only lowercase characters are used to label the variables). The profile 

is read from the text menu by the following commands: 

FILE-READ TRANSIENT TABLE  

It is possible to use abbreviations (f-rtt). The file name is also given with the 

extension, the file reading information appears on the screen. The profile then enters by 

commands in the boundary condition 

DEFINE-BOUNDARY CONDITIONS   
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9.2.2. UDF for boundary condition 

Time-dependent boundary conditions can be defined by the C-language procedure. 

Variables have a precisely defined by designation that must be found in the manual, there 

are also simple examples. 

Define x-coordinate of velocity at inlet using sine function of time 

    tAutux sin0  : 

 

/********************************************************************** 

   unsteady.c                                                          

   UDF for specifying a transient velocity profile boundary condition  

***********************************************************************/ 

 

#include "udf.h" 

 

DEFINE_PROFILE(unsteady_velocity, thread, position)  

{ 

  face_t f; 

  real t = CURRENT_TIME; 

 

  begin_f_loop(f, thread) 

    {    

      F_PROFILE(f, thread, position) = 10. + sin(7.*t); 

    } 

  end_f_loop(f, thread) 

} 

 

The file will be created as a * .txt file and will be saved with the extension C. It will be 

compiled interactively using the DEFINE-UDF-ITERPRETED-COMPILE commands. Then it 

joins the boundary conditions for the given entry boundary. 

9.3. Time-dependent tasks, evaluation 

Time-dependent problem in comparison with the time-independent (stationary task) is 

much more complex because at each time there is observed a change of flow field and thus 

all monitored values.  
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The most perfect image of solution enables animation, for example the velocity vector, 

pressure and other variables. But this is very demanding in terms of hardware. In addition, 

the presentation of the results requires a computer that does not fit into text reports. If it is 

really necessary to present time dependence of variables in text report, it is possible to 

create a series of images so that the data files are stored in predefined time steps, then 

create a graphic presentation and insert a picture into a text file. Because of the time and 

hardware requirements the simpler means are used for evaluation, as are the graphs of a 

variable vs. time at a predefined point, or evaluation of the mean value on the surface. 

 

Example of evaluation of flow behind the step  

Solve the flow in the area where at the input the velocity is varied periodically 

according to the functional velocity versus time. Evaluate the velocity and pressure at 

selected points. 

 

Fig.  9.4 Scheme of resolved area 

 

Geometry of area:  

 

   3.5 

    0.5 

    1.5 

Physical properties of air:  density   1.225 

 dynamic viscosity   1.7894e-05 

Boundary conditions at inlet: velocity   )7sin(2 t  

 mean velocity   2 

 intenzity of turbulence   2 

 hydraulic diameter   0.4 

Mathematical model: Reynolds number Re =235 294  turbulent flow  
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Results:  

It is necessary to define the points at which the graphic and text record of velocity and 

pressure will be performed.  

Commands: 

Point definition:  

SURFACE-POINT coordinates and name: POINT-INPUT, 

POINT-STEP, POINT-VORTEX 

Definiton of file:  

SOLVE-MONITOR-SURFACE name, plot, write time step, define 

DEFINE-AREA WEIGHTED AVERAGE-

FLOW TIME-PRESSURE 

point choice POINT-INPUT 

SOLVE-MONITOR-SURFACE name, plot, write time step, define 

DEFINE-AREA WEIGHTED AVERAGE-

FLOW TIME-VELOCITY 

point choice POINT-STEP 

SOLVE-MONITOR-SURFACE name, plot, write time step, define 

DEFINE-AREA WEIGHTED AVERAGE-

FLOW TIME-VELOCITY 

point choice POINT-VORTEX 

 

Determined period is depending on the velocoty input 

 

Computation starts with time-dependent calculation, the estimated time step (less than one 

tenth of period) 

. 

When calculating it is checked whether the number of internal iterations is less than 20, 

otherwise the time step will be corrected. The calculation result is written into the file- POINT-

INPUT.OUT, POINT-STEP.OUT and POINT-VORTEX.OUT. The files are text files and can 

be read into EXCEL to prepare graphs. The recording residuals shown the periodicity 

happens except for the first few iterations, which are affected by the calculation starting from 

an initial approximation, which is given by the zero-values of variables, see Fig.  9.5. 
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Fig.  9.5 Residuals of periodical solution 

 

 

 

Fig.  9.6 Static pressures 

 

Velocity value at POINT-STEP, POINT-VORTEX and pressure at POINT-INPUT are 

evaluated and displayed in Excel, see Fig.  9.7. 
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Fig.  9.7 Evaluation of velocity and pressure in a point in relation to time 

 

On Fig.  9.7 it is evident periodical curve of velocity and pressure, whose period is equal to 

the period of input velocity determined previously. Period is initially deformed by calculation 

starting with zero initial conditions inside the flow field. After about 1 s the amplitude of the 

displayed functions is constant. 
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10. Optimization (Adjoint solver) 

The idea of the adjoint is everywhere in modern and classical mathematics. Dates 

back to the 18th century. More recently it has emerged as a powerful technique for 

expanding engineering CFD analysis. An adjoint solver provides specific information about a 

fluid system that is very difficult to gather otherwise. An adjoint solver can be used to 

compute the derivatives of an engineering quantity with respect to all of the inputs for the 

system. The examples are: 

 Derivative of drag with respect to the shape of a vehicle. 

 Derivative of total pressure drop with respect the shape of the flow path.  

An adjoint solver is a specialized tool that extends the scope of the analysis provided by 

a conventional flow solver by providing detailed sensitivity data for the performance of a fluid 

system. In order to perform a simulation using the ANSYS Fluent standard flow solvers, a 

user supplies the geometry in the form of a computational mesh, specifies material properties 

and physics models, and configures boundary conditions of various types. The conventional 

flow solver, once converged, provides a detailed data set that describes the flow state 

governed by the flow physics that are being modeled. If a change is made to any of the data 

that defines the problem, then the results of the calculation can change. The degree to which 

the solution changes depends on how sensitive the flow is to the particular parameter that is 

being adjusted. Indeed, the derivative of the solution data with respect to that parameter 

quantifies this sensitivity to first order. Determining these derivatives is the domain of 

sensitivity analysis. 

 The process of computing an adjoint solution resembles that for a standard flow 

calculation in many respects. The adjoint solver solution advancement method is specified, 

residual monitors configured, and the solver is initialized and run through a sequence of 

iterations to convergence. One notable difference is that a scalar-valued observation is 

selected as being of interest prior to starting the adjoint calculation. Once the adjoint solution 

is converged the derivative of the observable with respect to the position of each and every 

point on the surface of the geometry is available, and the sensitivity of the observation to 

specific boundary condition settings can be found. This remarkable feature of adjoint 

solutions has been known for hundreds of years, but only in the last 25 years has the 

significance for computational physics analysis been recognized widely. 
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10.1. Using the adjoint solver 

This chapter describes the process for working with the adjoint solver module, as well as 

setting up, running, and postprocessing the adjoint solutions. Also, this chapter demonstrates 

the shape modification proces that is guided by the adjoint solution. The typical use of the 

adjoint solver involves the following steps: 

 Load or compute a conventional flow solution. 

 Load the adjoint solver module. 

 Specify the observable of interest. 

 Set the adjoint solver controls. 

 Set the adjoint solver monitors and convergence criteria. 

 Initialize the adjoint solution and iterate to convergence. 

 Post-process the adjoint solution to extract the sensitivity of the observable with respect 

to boundary condition settings. 

 Post-process the adjoint solution to extract the sensitivity of the observable with respect 

to shape of the geometry. 

 Modify boundary shapes based on shape-sensitivity data and recompute the flow 

solution. 

10.2. Limitations of adjoint solver  

Adjoint solver is a method that has some limitations and is implemented on the following 

basis:  

 The flow state is specified as a steady incompressible single-phase flow in an inertial 

reference frame that is either laminar or turbulent. 

 For turbulent flows a frozen turbulence assumption is made, in which the effect of 

changes to the state of the turbulence is not taken into account when computing 

sensitivities. 

 For turbulent flows standard wall functions are employed on all walls. 

 The adjoint solver uses methods that are first order accurate in space by default. If 

desired, you can select second order accurate methods  

 The boundary conditions are only of the following types: 

– Wall 

– Velocity inlet 

– Pressure outlet 

– Symmetry 
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– Rotational and translation periodic 

It is important to note that these requirements are not strict limitations for the conventional 

flow solver, but they are limitations for the adjoint solver. For hydraulic and pneumatic tasks 

(ie flow in closed areas), it is appropriate to use the part of the solver for the optimization of 

the pressure loss. For flow around the body, resistance and pressure forces are evaluated. 

Also, the combination of the monitored parameters is very illustrative. 

 

Notes: 

For tasks that converge well, it is possible to prepare computational automation to make it 

easier to work with the adjoint solver. In tasks with complicated geometry that converge 

poorly in the basic solver, it is possible to assume problematic convergence even when using 

the adjacent solver. The reason is that linearized Navier's Stokes equations (which are in 

essence a non-linear system of partial differential equations) are dealt with. 

10.3. Application 

10.3.1. Minimizing the pressure drop in 1800 elbow 

The goal of the task is to reduce the pressure loss in the 180° tube elbow using the 

Adjoint solver and to achieve a higher uniformity of the output profile. The problem is solved 

as spatial, see Fig. 10.1. The flow is assumed to be stationary, isothermal, turbulent (k- 

model, scalable wall functions). The flowing medium is air. The physical properties of the air 

are given in Tab.  10.1. 

 

Tab.  10.1 Dimensions and physical properties of air 

Diameter of the tube d (mm) 20 

Viscosity μ (kg/m.s) 1,789.10-5 

Density ρ (kg/m3) 1,225 

 

Fig.  10.1 Elbow model and mesh 
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Computational mesh consists from 43680 hexahedral cells, Boundary conditions are defined 

as very simple conditions Wall, Velocity inlet – 15 m/s, Pressure outlet – 0 Pa. 

 

The resolver settings are as follows: 

 Solver     Coupled solver. 

 Gradient scheme     Green-Gauss Cell based. 

 Discretization     Second Order Upwind. 

 Method      Pseudo Transient 

 Under-relaxation. 

o Length scale 0,02 m. 

o Timescale factor 5. 

 High Order Term Relaxation (all variables 0,75) is used. 

 Calculation till 100 iteration. 

 

Evaluation 

  

Fig.  10.2 Evaluate output speed and axial section through contours 

 

For further consideration, mean pressure drop (ie inlet pressure) and output velocity were 

evaluated: 

Pressure drop 107 Pa 

The mean value of the output speed 15 m/s 

Standard velocity deviation at output 1.14 m/s 

 

Solving the Adjusted Solver: 

 In the adjoint solver, it is possible to minimize the pressure drop between the control 

points (areas) in the area (between input and output - Δp0 = 90 Pa) 
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 To achieve a uniform output velocity profile, the target function is complemented by a 

standard deviation of the output velocity of the domain and is determined from the 

total output pressure values of the region 

 Definition of target function is a combination of pressure drop and standard deviation 

of the velocity at the output in one equation: 

 výstuptotvýstupvstup pdpdpfunkce  var  

 

 Setting the adjust solver: 

Turn off convergence control - Check 

convergence, 

 Make the following settings in the menu 

Adjoint Solution Controls: 

Courant Number    2, 

Artificial Compressibility   0,05, 

Flow Rate Courant Scaling  2, 

Under-Relaxation Factors  0,6, 

Number of iteration  300  

 

Fig.  10.3 Sensitivity map of geometry 

 

Sensitivity evaluation and morphing: 

The sensitivity map is in Fig.  10.3. Displays geometry locations where the pressure 

drop and the size of the standard deviation are sensitive to the shape of the tube. We display 

sensitivity map with contours log10(Shape Sensitivity Magnitude). 

 

Morphing: 

 Only the tube elbow is closed in the morphing area - Fig.  10.4. 

 To change geometry, select Scale Factor 2.5. 

 Expected change of the monitored function is done by pressing Expected Change. 

Optimal Displacement contours are shown in Fig.  10.5 

 To modify the geometry, press Modify Mesh. 

 Before accepting the edit (Accept), the modified geometry can be viewed and 

reversed if necessary (Revert). 
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Fig.  10.4 Region of morphing 
Fig.  10.5 Conturs of  Normal Oprimal 

Displacement 

 

Evaluation of the calculation: 

The effect of the shape change is checked by calculation of the flow field. The table 

shows the change of the monitored quantities against the initial flow field. Repeating the 

calculation with the adjoining solver and adjusting the geometry will iteratively approximate 

the optimal shape of the ube elbow. The results after six iterative loops are shown in Tab.  

10.2 

Tab.  10.2 

 Initial values Values after 6. 

iteration 

Pressure drop 107 Pa 89 Pa 

The mean value of the output speed 15 m/s 15 m/s 

Standard velocity deviation at output 1.14 m/s 1.03 m/s 

 

 

Fig.  10.6 Velocity in the domain [m/s] (left-default, right-optimized). 
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11. Multiphase flow 

11.1. Specification of multiphase materials 

A large number of flows encountered in nature and technology are the fows of phase 

mixture. Physical phases of matter are gas, liquid, and solid, but the concept of phase in a 

multiphase flow system is applied in a broader sense. In multiphase flow, a phase can be 

defined as an identifiable class of material that has a particular inertial response to and 

interaction with the flow and the potential field in which it is immersed. For example, different-

sized solid particles of the same material can be treated as different phases because each 

collection of particles with the same size will have a similar dynamical response to the flow 

field. 

Multiphase Flow Regimes 

Multiphase flow regimes can be grouped into four categories:  

 gas-liquid or liquid-liquid flows - bubbly flow, droplet flow, slug flow, stratified/free-surface 

flow,  

 gas-solid flows - particle-laden flow, pneumatic transport,  fluidized bed 

 liquid-solid flows – slury flow, hydrotransport, sedimentation  

 three-phase flows - three-phase flows are combinations of the other flow regimes listed in 

the previous sections. 

For multiphase modeling two approaches are used: 

Euler – Lagrange approach (discrete phase) - the fluid phase is treated as a continuum by 

solving the Navier-Stokes equations, while the dispersed phase is solved by tracking a large 

number of particles, bubbles, or droplets through the calculated flow field. The dispersed 

phase can exchange momentum, mass, and energy with the fluid phase. This requires that 

the dispersed second phase occupies a low volume fraction, even though high mass loading  

is acceptable. The particle or droplet trajectories are computed individually at specified 

intervals during the fluid phase calculation. This makes the model appropriate for the 

modeling of spray dryers, coal and liquid fuel combustion, and some particle-laden flows, but 

inappropriate for the modeling of liquid-liquid mixtures, fluidized beds, or any application 

where the volume fraction of the second phase cannot be neglected.  

Euler – Euler approach - in the Euler-Euler approach, the different phases are treated 

mathematically as interpenetrating continua. Since the volume of a phase cannot be 

occupied by the other phases, the concept of phasic volume fraction is introduced. These 

volume fractions are assumed to be continuous functions of space and time and their sum is 

equal to one. Conservation equations for each phase are derived to obtain a set of 
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equations, which have similar structure for all phases. These equations are closed by 

providing constitutive relations that are obtained from empirical information, or, in the case of 

granular flows, by application of kinetic theory. 

 

In ANSYS Fluent, three different Euler-Euler multiphase models are available: the volume of 

fluid (VOF) model, the mixture model, and the Eulerian model. 

VOF Model 

The VOF model is a surface-tracking technique applied to a fixed Eulerian mesh. It is 

designed for two or more immiscible fluids where the position of the interface between the 

fluids is of interest. In the VOF model, a single set of momentum equations is shared by the 

fluids, and the volume fraction of each of the fluids in each computational cell is tracked 

throughout the domain. Applications of the VOF model include stratified flows, free-surface 

flows, filling, sloshing, the motion of large bubbles in a liquid, the motion of liquid after a dam 

break, the prediction of jet breakup (surface tension), and the steady or transient tracking of 

any liquid-gas interface. 

Mixture Model 

The mixture model is designed for two or more phases (fluid or particulate). As in the 

Eulerian model, the phases are treated as interpenetrating continua. The mixture model 

solves the mixture momentum equation and prescribes relative velocities to describe the 

dispersed phases. Applications of the mixture model include particle-laden flows with low 

loading, bubbly flows, sedimentation, and cyclone separators. The mixture model can also be 

used without relative velocities for the dispersed phases to model homogeneous multiphase 

flow. 

Eulerian Model 

The Eulerian model is the most complex of the multiphase models in ANSYS Fluent. It solves 

a set of momentum and continuity equations for each phase. Coupling is achieved through 

the pressure and interphase exchange coefficients. The manner in which this coupling is 

handled depends upon the type of phases involved; granular (fluid-solid) flows are handled 

differently than nongranular (fluid-fluid) flows. For granular flows, the properties are obtained 

from application of kinetic theory. Momentum exchange between the phases is also 

dependent upon the type of mixture being modeled. ANSYS Fluent’s user-defined functions 

allow you to customize the calculation of the momentum exchange. Applications of the 

Eulerian multiphase model include bubble columns, risers, particle suspension, and fluidized 

beds. 
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To choose between the mixture model and the Eulerian model, you should consider the 

following guidelines: 

 If there is a wide distribution of the dispersed phases (that is, if the particles vary in size 

and the largest particles do not separate from the primary flow field), the mixture model 

may be preferable (that is, less computationally expensive). If the dispersed phases are 

concentrated just in portions of the domain, you should use the Eulerian model instead. 

 If interphase drag laws that are applicable to your system are available (either within 

ANSYS Fluent or through a user-defined function), the Eulerian model can usually 

provide more accurate results than the mixture model. Even though you can apply the 

same drag laws to the mixture model, as you can for a non-granular Eulerian simulation, 

if the interphase drag laws are unknown or their applicability to your system is 

questionable, the mixture model may be a better choice. For most cases with spherical 

particles, the Schiller-Naumann law is more than adequate. For cases with non-spherical 

particles, a user-defined function can be used. 

 If you want to solve a simpler problem, which requires less computational effort, the 

mixture model may be a better option, since it solves a smaller number of equations than 

the Eulerian model. If accuracy is more important than computational effort, the Eulerian 

model is a better choice. Keep in mind, however, that the complexity of the Eulerian 

model can make it less computationally stable than the mixture model. 

11.2. Mixture model 

11.2.1. Continuity equation for mixture 

The continuity equation for the mixture is 

  0







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 
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  ( 11.2.1) 

where jmv ,  are the components of the mass-averaged velocity: 
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and m  is the mixture density 
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( 11.2.3) 

where k  is the volume fraction of phase k . 
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11.2.2. Momentum equation 

The momentum equation for the mixture can be obtained by summing the individual 

momentum equations for all phases. It can be expressed as 
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where n  is the number of phases, if  are the components of body force, and  m  is the 

viscosity of the mixture  
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  ( 11.2.5) 

and ikdrv ,,  is the component of drift velocity for secondary phase 

mkkdr vvv


,  
( 11.2.6) 

Equation of volume fraction of second phase is given by equation: 
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11.2.3. Mixture flow behind the step 

Compute and display the volume fraction of water and air in flowing mixture. 

 

Fig.  11.1 Scheme of region 

 

Geometry of region 

Length of region x  [m] 3.5 

height of region y  [m] 0.5 

width of region z [m] 1.5 

u 

y
z 

x 

z
z 

Flow region  

Inlet-air 
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Physical properties: 

 Water Air source 

Density ρ [kgm-3] 998 1.225 

Dynamic viscosity   [kg(ms)-1] 0.001003 1.7894e-05 

 

Boundary conditions: 

Inlet-water turbulent intensity I   [%] mixture 2 

 hydraulic diameter hd  [m] mixture 0.4 

 velocity u  [ms-1] water 1 

  air 1 

 volume fraction   [1] water 1 

  air 0 

Inlet-air turbulent intensity I   [%] mixture 5 

 hydraulic diameter hd  [m] mixture 0.0794 

 velocity u  [ms-1] water 0.8 

  air 0.8 

 volume fraction   [1] water 0 

  air 1 

It is also possible to monitor the effect of the buoyancy force on air propagation. 

 

Matematical model: 

Reynolds number   Re =400 000   flow is turbulent 

 

Results: 

 

Fig.  11.2 Contours of the volume fraction of air in longitudinal and three cross sections, the 

buoyancy force is considered 
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Fig.  11.3 Contours of the volume fraction of air in longitudinal and three transversal sections, 

no buoyancy force is considered 
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12. Cavitation 

The flow of liquids in hydraulic systems is accompanied by cavitation and cavitation 

destruction, noise and other undesirable phenomena, which are currently at the forefront of 

interest in the areas of mathematical and experimental research on cavitation in hydraulic 

components and systems of technical practice, as these systems are still working in 

increasing operating conditions (pressures and flow rates) and, therefore, this phenomenon 

occurs in many technical applications.  

The cavitation fluid is a mixture of liquid, vapor and air, undissolved in the form of 

bubbles. The gas content significantly influences the density of the liquid, resulting in a 

change in the dynamic properties of the liquid. Thus, cavitation occurs when certain physical 

states of the liquid, especially temperature and pressure, are reached. If the pressure drops 

to the so-called cavitation pressure, or the saturated vapor pressure, which is the function of 

the temperature of the liquid, the liquid continuity is disturbed and the cavitation cavity is 

formed by evaporation of the liquid. On the other hand, cavitation can also arise in case of 

separation of flow or as the result of oscillation and subsequent induced pressure waves. 

Cavitation flow modeling is possible as a modeling of the multiphase flow of a mixture 

of liquids and gases when bubble dynamics according to the Rayleigh - Plesset equation is 

considered. This model is time-consuming, but due to the development of computational 

options it is possible to use it. 

12.1. Rayleigh -Plesset thory 

All cavitation models are based on the linearized Rayleigho-Plesset equation describing 

the growth of individual gas bubbles in the liquid: 
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where pB(t) is the bubble pressure, p∞(t) is the pressure around the bubble, L is the density 

of the liquid, L is the kinematic viscosity of the liquid, R is the radius of the bubble, SB is the 

area of the bubble. This equation was solved by a number of scientists, such as Rayleigh 

and Plesset, in a simplified form (a member of surface tension, a viscous member and 

members with higher derivatives were neglected). The simplified differential equation in 

multiphase flow application was used in the form: 
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There are several cavitation models that are different in solution approach and entering of 

input parameters. The tested system must contain a liquid and vapor phase. In FLUENT 

program, Singhal, Schnerr-Sauer and Zwart-Gerber-Belamri cavitation models are available. 

The Schnerr-Sauer and Zwart-Gerber-Belamri models are more stable and thus faster 

conversion can be expected. 

12.2. Schnerr and Sauer cavitation model 

This model is a possible approach to deriving a phase change from liquid to vapor. The 

equation for the vapor fraction is in shape 
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where R it presents steam generation or evaporation rate  
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When this equation is implemented in the previous equation, then next shape is obtained 
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Thus, in this model, the only parameter that must be defined is the number of spherical 

bubbles in the volume of liquid  bn . If we assume that no bubbles are formed or lost, then the 

density of the bubbles will be constant. 

The final form of equations is: 
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12.3. Cavitation in the nozzle 

12.3.1. Description of experiment  

Experimental equipment consisted of hydraulic circuit with circular converging-

diverging nozzle, frequency converter, flowmeter, pressure and noise sensors and dissolved 

oxygen transmitter. The flow in the circuit was forced by the pump connected to the tank, the 

working liquid was water. Water passed through the flowmeter and reached the nozzle. With 

increasing pump motor’s frequency more air was released in the nozzle. The change of 

oxygen content in the water was measured by the dissolved oxygen transmitter located in the 

tank. In the beginning and end of the nozzle the pressure sensors were installed. The nozzle 

is made of transparent plastic. The flow was regulated by changing the frequency of pump’s 

motor by means of frequency converter. The photo of the circuit is shown in  

Fig.  12.1. The measurements were performed at twelve different pump’s motor 

frequencies, from 10 Hz to 32 Hz with step equal to 2 Hz, see Tab.  12.1 and Fig.  12.2 . 

 

Fig.  12.1 Photo of circuit 

Tab.  12.1 Results of measurements  

f Qv pin pout L 

Hz l/s Pa Pa cm 

18 2.61 138982 96476 1.6 

20 2.79 155301 96725 2.2 

22 2.95 173085 97048 4.1 

24 3.15 192279 97329 5.3 

26 3.31 213556 97775 7.0 

28 3.49 236471 98202 9.4 

30 3.68 260885 98493 11.0 

32 3.88 286609 97937 11.5 
 

 

 
 



Cavitation 

180 

 

 

Fig.  12.2 Cavitation clouds development 

12.3.2. Results 

To choose the most suitable turbulent model to the further calculation the series of 

tests were performed. At one frequency of pump’s motor equal to 32 Hz (maximum flow) four 

different turbulence models were tested: k- RNG, k- realizable, k-ω, SAS. Finally based on 

comparison of cavitation area size, the k-ε RNG model was chosen for further calculation 

and the results are in Fig.  12.3. 

 

Vapor fraction (scale is (0;1)) 

 

Undissolved air fraction (scale is (0;0.28)) 

 

Gas (vapour+air) fraction (scale is (0;1)) 

 

Gas measured area of cavitation cloud 

Fig.  12.3 Comparison of vapor, air, vapor+air volume fraction with experimental evaluation 

 

The changes of volume of air and of vapour in the domain in time are shown in Fig.  12.4. It 

can be observed that for vapour the one frequency dominates the others, in case of air 

volumes a few frequencies can be seen. The results of FFT analysis are shown in the same 

figures in second raw.. The frequencies obtained by FFT analysis were 12.2 Hz, 24.4 Hz and 

36.6 Hz.  
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Volume integral of air phase in time, 32 Hz 

motor’s frequency 

 

Volume integral of vapour phase in time, 

32 Hz motor’s frequency 

 

 

FFT analysis of volume integral of air phase, 

32 Hz motor’s frequency 

 

 

FFT analysis of volume integral of vapour 

phase, 32 Hz motor’s frequency 

Fig.  12.4 Time series and FFT analysis of volume integral of vapor and air 

 

After simulation performance it can be stated that in case of vapour phase there is one main 

growing and shrinking frequency. Meanwhile the air phase is changing with number of 

frequencies with no such clear domination. It also was observed that for vapour type of 

cavitation (which occurs at flow rate 2.61 l/s – 18 Hz motor’s frequency) higher frequencies of 

phase changing appeared. When more air is observed in cavitation cloud, the frequency of 

phase growing and shrinking is decreasing (which occurs at flow rate 3.88 l/s – 32 Hz 

motor’s frequency). That indicates that air is responsible for lower frequencies in noise 

analysis. 
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13. Appendix 

13.1. Vectors and scalars 

 Quantities that can be determined by a single number when a unit of measure is 

chosen are called scalars. The vector is a variable that provides different data. One is 

arithmetic (its size), the other is geometric. The vector is an oriented line. 

Assume a rectangular coordinate system and let the point be given by three 

coordinates  zyxx ,,


  . Let 


xa , 


ya , 


za  are the projections of the vector 


a  in coordinate 

axes. Tyto These vectors are called components of vector 


a  and are valid  

zyx aaaa


  (13.1.1) 

If 


i  is unit vector of axis x, je xx aia


 , where xa  is number, expressing the vector size 


xa  

and is called x-coordinate of vector, see Fig.  13.1. Similarly, yy aia


  a zz aia


 . It is also 

possible to write 

zyx akajaia


  (13.1.2) 

    

Fig.  13.1 Vector components, vector coordinates, unit vectors 

 

The vector in the coordinate system is defined as an ordered triple of numbers and is 

recorded 

 zyx aaaa ,,


 resp.   zyx aaaa ,,


 (13.1.3) 
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 The scalar product of vectors 


a  and 


b  with coordinates  zyx aaaa ,,


 and 

 zyx bbbb ,,


 is scalar  
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2
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 aaaaaaaaa zzyyxx.  (13.1.4) 

Dyadic vector product is tenzor  
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If scalar function  zyxf ,,  is given, than gradient of scalar function is vector with 
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and a symbolic designation is often used 
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If a vector 
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a  with coordinates zyx aaa ,,  is given, then a gradient of vector function is 
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Let 


a  is a vector with coordinates zyx aaa ,, . Then divergence of vector 


a  is scalar   
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Derivative of vector 
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a  by vector 
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b  is signed 
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Divergence of dyadic prodact of vectors (resp. tenzors) is : 
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13.2. Coordinate systems                                         

Imagine we stand on the bridge and see how the concentration of fish just in place 

changes with time. So we will see how the concentration varies with time in a fixed place 

firmly connected to the surface of the earth. This space is called absolute space and is the 

basic space. The quantity 
t

c




 is partial derivative of concentration c  with respect toe t  at 

cnstant coordinates zyx ,, .  

Now, instead of standing on a bridge, we'll get to the motorboat and ride along the 

river, sometimes upstream, sometimes across the river and sometimes downstream. 

Changing the concentration of fish with time will depend somehow on the movement of the 

boat. Then the total derivative of concentration by time is given by the relationship. 

 
dt

dz

z

c

dt

dy

y

c

dt

dx

x

c

t

c

dt

dc



















      (13.2.1) 

where 
dt

dx
, 

dt

dy
 and 

dt

dz
 are the components of boat velocity. 

Now we'll get to the boat, let go with the river stream and count the fish. The 

observer's velocity is now the same as the flow velocity. Specifying the change in fish 

concentration over time depends on the local velocity of the flow. This derivative is a special 

kind of total derivative and is called a substantial derivative or a "derivative following 

motion". Its relation to the partial derivative by time is 
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(13.2.2) 

 where xu , yu  a zu  are components of local water velocity. Space is relative, ie it is small 

spaceje, which can move according to absolut space.  

13.3. Field of velocity and acceleration 

When the field fluid flows, the velocity field given by the vector function will be 

considered [1]  













xtuu ,  (13.3.1) 

Velocity is defined at a point 


x  whose components depend on the selected coordinate 

system. In the most general case, the velocity is a three-dimensional time-dependent vector. 

Fluid acceleration is prescribed in the usual way 

Dt

uD
a




  (13.3.2) 

The designation of the derivative by the letter D  represents a substantial derivative. 

Substantial derivative of the scalar (temperature, concentration) can be expressed by vector 
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(13.3.3) 

First part 
t


 is called local time derivative and second part 



 u.  is so called convective 

derivative. 

Substancial derivative of vector is more complicated and is valid (for clarity the vector is 

written in columns)  
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